PyTorch + Catalyst实现的“ 。
该存储库处理培训过程。 为了进行推断,请检出GUI包装器:PyQT中的 。
该储存库已与合并为。
目录
要求
计算方式
我们在1050 Mobile和Tesla V100的两个GPU上运行了该程序。 我们没有进行任何基准测试,但是V100的速度大约提高了400倍。 它还取决于您下载的数据量。 因此,任何服务器级GPU都是可行的。
贮存
该程序确实会生成很多文件(下载和其他方式)。 每个音频文件的大小为96kiB。 对于7k独特的音频剪辑,并以70/30的比例进行火车和验证拆分,它占用了约120GiB的存储空间。 因此,如果您下载更多音频片段,则至少为1TB 。
记忆
至少需要4GB VRAM 。 它可以处理2个批处理大小。在20个批处理大小下,在两个GPU上,每个GPU占用16GiB VRAM。
设置
如果您使用的是Docker,则
1