Qno侠诺透明桥接模式适合不想更动原有合法IP的PC设定与架构,想快速实现合法IP与虚拟IP均可通过侠诺安全路由访问Internet。企业可依据实际需求来选择适用的模式,让您的企业网络运行更加通畅便利!
2025-12-13 20:15:15 56KB 网络
1
光伏PV三相并网逆变器MATLAB仿真 模型内容: 1.光伏+MPPT控制(boost+三相桥式逆变) 2.坐标变换+锁相环+dq功率控制+解耦控制+电流内环电压外环控制+spwm调制 3.LCL滤波 仿真结果: 1.逆变输出与三项380V电网同频同相 2.直流母线电压600V稳定 3.d轴电压稳定311V;q轴电压稳定为0V,有功功率高效输出 光伏三相并网逆变器是将光伏阵列产生的直流电转换为与电网同步的交流电的设备。在这一过程中,涉及的关键技术包括最大功率点跟踪(MPPT)控制、三相桥式逆变、坐标变换、锁相环技术以及dq功率控制等。 MPPT控制是光伏系统中的核心技术,其目的是使光伏阵列始终在最大功率点工作,以实现能量的最大化利用。在本文中,MPPT控制通过boost电路实现,该电路首先将光伏阵列输出的低压直流电升压到适当水平,再进行逆变处理。 三相桥式逆变器是实现直流电到交流电转换的关键环节,通过适当的开关策略,将直流电压转换为三相交流电压。为了确保逆变器输出的电流与电网电压的频率和相位相同,需要采用坐标变换和锁相环技术,以确保逆变器输出的稳定性。 dq功率控制是一种在同步旋转坐标系中进行的控制方法,它将交流系统中的三相变量分解为直流量(d轴)和交流量(q轴),以便于控制。dq功率控制能够有效地解耦控制系统的有功功率和无功功率,使得能量转换更为精确。 电流内环电压外环控制是一种常用的控制策略,其中电流内环负责实现快速动态响应,而电压外环则负责维持输出电压的稳定性。通过这种方式,可以确保逆变器输出的电流和电压质量,提高系统的整体性能。 spwm调制是一种脉宽调制技术,通过调整开关器件的导通时间,来控制输出电压的频率和幅值,从而实现高效率、低失真的交流电输出。 LCL滤波器是逆变器输出端的一个重要组成部分,用于滤除高频谐波,减少对电网的干扰,并保证输出电流的平滑性。 在仿真结果中,逆变器输出能够与三相380V电网同频同相,这表明逆变器的锁相功能运行正常,实现了与电网的良好同步。直流母线电压维持在600V稳定,这说明系统的电压控制环节工作得当,能够确保电压的稳定性。d轴电压稳定在311V,而q轴电压稳定在0V,这表明系统能够有效地实现有功功率的输出,无功功率输出得到抑制,实现了功率的高效转换。 光伏三相并网逆变器仿真模型的建立和分析对于优化逆变器性能、提高能量转换效率以及确保电网的稳定运行具有重要意义。通过MATLAB等仿真软件进行模型构建和分析,可以在不实际搭建物理设备的情况下,模拟实际工作环境,对各种工况下的系统表现进行评估。 值得注意的是,本文档中提到的仿真模型,还涉及到了在不同科技领域的应用,例如西门子变压器风冷控制系统的应用,这表明光伏三相并网逆变器技术在电力电子和能源转换领域的广泛应用前景。 经过以上分析,可以看出光伏三相并网逆变器在新能源技术应用中的核心地位,及其在提高能源转换效率、减少环境污染方面的重要作用。随着全球对可再生能源技术的重视程度不断提高,光伏三相并网逆变器的性能优化和控制策略的创新,将成为未来研究的重要方向。
2025-12-08 20:04:31 749KB matlab
1
内容概要:电力电子技术中电压型单相全桥逆变电路的Simulink仿真模型。 适合人群:具备一定基础安装有MATLAB软件的大学生及研究生 能学到什么:①基础的电力电子知识、MATLAB仿真软件、Simulink模块如何搭建电路,如何实现的。 阅读建议:此资源适用大学生做课程设计学习了解电力电子知识,可以结合王兆安老师的电力电子技术中的内容一起来实践,并调试对应的仿真。
2025-12-06 21:47:42 48KB matlab Simulink 电力电子技术
1
利用Matlab进行逆变技术建模的方法及其应用。首先探讨了电压型单相半桥逆变电路,强调了死区时间和载波频率等关键参数的设定方法,并展示了如何通过Simulink生成标准方波并检测波形质量。接着讨论了电压型单相全桥逆变电路,在此基础上增加了移相角和谐波滤波器的设计,确保输出电压的总谐波失真率低于3%,同时解决了负载突变情况下的动态响应问题。最后深入讲解了电流型三相逆变电路,采用滞环控制策略来稳定电流输出,实现了完美的正弦波形以及正确的相位差。所有模型均经过充分调试,可以直接用于实际项目中。 适合人群:从事电力电子技术研发的专业人士,尤其是那些希望深入了解逆变技术原理及其实现细节的技术人员。 使用场景及目标:适用于需要快速构建逆变电路模型的研究人员和技术开发者,帮助他们节省大量实验成本,提高工作效率。主要目的是让使用者掌握不同类型的逆变电路的工作机制,学会正确配置相关参数,从而获得理想的波形输出。 其他说明:文中提供的Matlab代码片段可以帮助读者更好地理解和操作具体的逆变电路模型。此外,还特别提醒了一些容易忽视的问题,如死区时间的选择、LC参数匹配等,这些都是成功搭建高质量逆变电路的重要因素。
2025-12-06 21:38:45 13.14MB
1
蓝桥杯智能体开发模拟赛是一项面向高等院校学生和科技爱好者的技术竞赛活动,旨在培养参与者的智能体系统设计能力、编程技能以及解决实际问题的能力。智能体(Intelligent Agent)是人工智能领域的一个核心概念,它可以是一个软件系统或者一个机器人,能够通过传感器感知环境,并根据感知结果自主作出决策和行动。 在蓝桥杯智能体开发模拟赛中,参赛者需要根据给定的比赛任务和规则,设计并实现一个或多个智能体。这些智能体在模拟的或实际的环境中运行,需要完成特定的任务,如路径规划、资源管理、策略决策、交互协作等。竞赛题目往往设计为具有一定挑战性的实际问题,能够充分考察参赛者的创新能力和技术应用能力。 蓝桥杯智能体开发模拟赛通常会提供一系列的资料和工具包,帮助参赛者理解比赛要求和相关的技术背景。这些资料可能包括智能体的理论知识、编程接口说明、比赛平台的使用指南、历史比赛案例分析等。通过这些资料,参赛者能够更好地准备比赛,并在实践中学习如何将理论知识应用于解决实际问题。 在智能体开发的过程中,参赛者需要考虑的关键技术点可能包括但不限于:算法设计、数据结构选择、智能体的感知能力实现、决策策略制定、通信协议设计、测试验证方法等。这些技术点是智能体系统开发中的核心要素,也是比赛中需要重点关注和深入研究的地方。 此外,智能体开发模拟赛还可能涉及到团队协作的环节。由于智能体系统的复杂性,单个参赛者可能难以覆盖所有的技术领域。因此,团队成员之间需要明确分工,通过协作共同完成智能体的设计和实现。在这个过程中,有效的沟通和团队管理也是成功的关键因素之一。 蓝桥杯智能体开发模拟赛不仅是一次技术竞技活动,它还是一个促进学术交流、激发创新思维的平台。通过比赛,参赛者可以与其他技术爱好者交流想法,学习到先进的技术和方法,同时也能够检验自己的技术实力和解决问题的能力。对于致力于人工智能领域学习的学生和技术人员来说,这是一次难得的实践机会。 模拟赛中开发的智能体系统不仅可以应用于竞赛之中,许多技术和方法在实际应用中也有广泛的应用前景。例如,在工业自动化、智能家居、医疗辅助、交通管理等领域,智能体技术都发挥着重要作用。因此,通过参与蓝桥杯智能体开发模拟赛,参赛者不仅能够锻炼技能,还能够为未来的职业发展打下坚实的基础。 蓝桥杯智能体开发模拟赛是培养创新精神和实践能力的重要赛事,它为参与者提供了一个展示才华、学习进步的舞台。对于渴望在人工智能领域取得成就的年轻人来说,这是一次宝贵的尝试和经历。
2025-12-04 19:53:08 25.55MB 蓝桥杯
1
内容概要:本文详细介绍了单相无桥PFC图腾柱的Plecs仿真方法及其控制策略。首先阐述了单相无桥PFC图腾柱的基本原理,即通过控制开关管的通断使输入电流跟踪输入电压波形,从而实现功率因数校正。接着重点讨论了采用Plecs软件进行仿真的具体步骤,包括建立电路模型、设置参数等。文中还深入探讨了电压外环电流内环的双环控制策略,其中电流内环采用了平均电流模式控制,有效抑制了电流谐波并提升了电流跟踪性能。此外,为提高系统动态响应和稳定性,引入了输入电压前馈策略,通过预测输入电压变化来提前调整开关管的通断时间。最后,通过对仿真结果的分析,验证了所提出的控制策略对提升单相无桥PFC图腾柱性能的重要作用。 适合人群:从事电力电子技术研究的专业人士,尤其是关注功率因数校正技术和电路仿真的研究人员和技术人员。 使用场景及目标:适用于需要深入了解单相无桥PFC图腾柱工作原理、仿真方法以及优化控制策略的研究项目。目标是提高系统的动态响应速度和稳定性,进而提升整体性能。 其他说明:本文不仅提供了理论分析,还结合实际仿真结果进行了详细的性能评估,有助于读者全面掌握相关技术和方法。
2025-12-03 18:50:51 1003KB 电力电子
1
四轴桥板-卧加-AB轴坐标转宏程序送VT 四轴桥板卧加编程带刀尖跟随G65p9012 配套UG-MC后处理,适用于四轴不带rtcp功能的机床 工件任意摆放,一次装夹,任意点位建立坐标,后处理自动计算与回转中心的差值 三菱-发那科-新代系统可通用 A轴B轴正负方向均可,懂行的可自定义修改 在数控编程领域,四轴桥板卧加是一种常见的加工方式,特别是在需要高精度和复杂工艺的场景中。该领域的技术文件通常涉及到机床操作、编程技巧、后处理程序以及刀具管理等多个方面。从给出的文件信息中,我们可以挖掘到一些关键的知识点。 四轴桥板卧加通常是指在一个四轴数控机床上进行的桥式工件的卧式加工。在这种加工方式中,工件可以在机床的任意位置摆放,通过一次装夹便可以完成多个角度或位置的加工任务。这种工艺特别适用于复杂形状的零件加工,能够大幅提高生产效率和加工精度。 工件在进行四轴桥板卧加时,需要建立一个稳定的坐标系。后处理程序在这里起到了至关重要的作用。它能够在工件被装夹到任意位置后,自动计算出工件坐标与机床回转中心的差值,从而确保加工的精确性。这一过程涉及到复杂的数学算法和精确的测量技术。 再者,针对四轴机床不带rtcp(旋转工具中心点)功能的情况,需要利用宏程序来实现刀具的跟随功能。宏程序是一种高级编程技术,它允许机床执行更为复杂的操作,如G65p9012这样的代码,就是为了在程序中调用特定的子程序或宏来完成特定任务。通过这样的编程方式,可以有效地控制四轴桥板卧加过程中的刀具路径,以适应不同的加工需求。 此外,配套的UG-MC后处理程序是专门为四轴桥板卧加编程设计的,它能够与不同品牌的数控系统兼容,比如三菱、发那科以及新代系统等。这些系统通常具有不同的编程语言和操作界面,而UG-MC后处理程序能够将编程人员编写的代码转换成各系统能够识别和执行的指令,从而大大简化了不同系统间的兼容性问题。 文件信息中还提到了可以对A轴和B轴的正负方向进行编程调整。这意味着用户可以对后处理程序进行自定义修改,以满足特定的加工需求。这对于那些懂得如何操作和修改数控程序的专业人员来说,是一个非常有用的功能。 四轴桥板卧加编程技术是一套涵盖了机床操作、编程技巧、后处理程序开发以及刀具管理等多方面的综合性技术。掌握这些知识对于提高数控机床的加工效率和精度有着极其重要的意义。特别是在需要处理复杂形状工件的情况下,通过四轴桥板卧加的方式可以大大提升加工质量和速度,为企业带来更大的经济效益。
2025-12-03 17:03:02 1.59MB paas
1
实例讲解半桥LLC效率低下原因及解决.pdfpdf,实例讲解半桥LLC效率低下原因及解决.pdf
2025-12-01 17:34:28 1.06MB 开关电源
1
【LLC谐振变换器效率低下原因分析及解决方法】 LLC谐振变换器因其开关损耗小、适用于高频高功率应用而备受青睐。然而,在实际设计中,许多工程师可能会遇到功率输出不足的问题。本文以半桥谐振LLC变换器为例,深入探讨效率低下原因并提出解决方案。 我们来看看半桥LLC的基本参数。在这个实例中,PFC铁硅铝磁环AS130的电感量为330uH,PFC二极管选用MUR460,PFC MOSFET为7N60,PFC输出电压为395V。负载为24V,6A,146W。LLC级的谐振网络参数包括谐振电感Ls为175uH,谐振电容Cs为15nF,励磁电感Lm为850uH,M值(励磁电感与谐振电感之比)为5,Q值为0.5,工作频率Fr为100kHz。变压器的匝比为8.5,开关使用7N60二极管。在满载150W,开关频率82kHz的情况下,虽然波形看起来正常,但效率仅达到88%。 **思考1**:低励磁电感可能导致MOSFET关断损耗增加。初始设计中,励磁电感Lm为550uH,通过调整到850uH,虽然空载时励磁电流峰值有所下降,但效率提升有限,因为降低励磁电感不利于ZVS条件的实现。 **思考2**:次级二极管在谐振网络电流等于励磁电感电流后停止传导,可能影响ZCS,尤其是在满载时,二极管振荡可能恶化效率。需要测量满载时的二极管电流波形以确认。 **思考3**:二极管钳位和双谐振电容的过载保护方案可能影响效率。这需要进一步评估其对整体性能的影响。 **建议1**:提高工作频率,确保开关频率略高于谐振频率,以补偿死区时间的影响。 **建议2**:避免在重载时使用过低的开关频率,防止副边漏感和原边节电容谐振,影响效率。 **建议3**:单独测试PFC和DCDC部分,以确定效率低下的源头。增大励磁电感虽可减少励磁电流,但可能不利于ZVS,增加死区时间反而可能降低效率。 **建议4**:对于PFC效率低的问题,可考虑采用CRM或DCM模式。如果空间允许,可使用铁氧体提升效率。 经过上述建议的实施,再次测试得到满载30分钟的效率提升至89.6%。这表明参数的微调对于效率改善至关重要。具体参数调整包括电感量增大、初级匝数减少、次级电流密度提升以及考虑最小输入电压计算峰值增益等。同时,根据Q值选择合适的谐振元件值,并通过控制初级和次级间的物理距离来调整漏感,确保系统性能的优化。 总结来说,提高LLC谐振变换器效率涉及多个方面,包括正确计算谐振频率、优化谐振网络参数、合理选择开关器件以及考虑系统的保护策略。通过对这些因素的精细调整,可以显著提升变换器的工作效率。
2025-12-01 17:33:21 308KB 谐振变换器
1
三相四桥臂逆变器MATLAB Simulink仿真模型:应对不平衡负载的电压控制策略与谐波管理研究,基于MATLAB Simulink仿真的三相四桥臂逆变器模型:应对不平衡负载的电压调控与谐波处理策略,三相四桥臂逆变器MATLAB Simulink仿真模型:(应对不平衡负载) 三相四桥臂逆变器在传统的三相桥式逆变器的基础上增加了一个桥臂,通过增加一个桥臂来直接控制中性点电压,并且产生中性点电流流入负载。 模型不报错,参数可调。 1 增加了一个自由度,使三相四桥臂对逆变电源可以产生三个独立的电压,从而使其有在不平衡负载下维持三相电压的对称输出的能力 2 基于载波的PWM调制(HIPWM)),可以实现谐波注入与传统3D-SVPWM控制的等效,实现三相四桥臂相间耦合的问题 3 外环采用PR控制器,内环采用PI控制。 并针对非线性负载产生的5、7次谐波电流,采用比例多谐振控制, 即并联入5、7次谐振控制器 4 附带参考文献和仿真报告 ,三相四桥臂逆变器; MATLAB Simulink仿真模型; 不平衡负载; 电压对称输出; 载波的PWM调制; HIPWM; PR控制器; PI控制;
2025-12-01 15:41:15 2.32MB edge
1