数据缺失在大部分数据分析应用中都很常见,Pandas使用浮点值NaN表示浮点和非浮点数组中的缺失数据,他只是一个便于被检测出来的数据而已。Python内置的None值也会被当作NA处理处理NA的方法有四种:dropna,fillna,isnull,notnullis(not)null,这一对方法对对象做出元素级的应用,然后返回一个布尔型数组,一般可用于布尔型索引。dropna,对于一个Series,dropna返回一个仅含非空数据和索引值的Series。问题在于DataFrame的处理方式,因为一旦drop的话,至少要丢掉一行(列)。这里解决方法与前面类似,还是通过一个额外的参数:dropna
1