汇总了目前论文发表中主要的箱型组合图使用方法,让论文秒变高大上的神器
2021-11-17 21:02:11 32.21MB R语言 ggplot2 箱线图 小提琴图
涵盖了目前表征数据分布范围、置信区间、贝叶斯数据统计等所有方法的统计绘图
2021-11-17 17:02:28 41.14MB R语言 ggplot2 ggdist 置信区间
至此聚类相关的内容告一段落,前面十篇博客介绍了常见的几种聚类算法,也加入了一些代码实现。这篇博客来一个汇总的实例,分别创建圆形数据、月牙形数据、聚团数据以及随机数据,并测试不同数据在各种不同聚类算法中的聚类效果以及消耗时间。 import time import warnings import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import cluster from sklearn import datasets as ds from sklearn.neighbo
2021-11-04 15:43:48 432KB 分布 学习 数据
1
手把手视频详细讲解项目开发全过程,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 课程简介 从零开始讲解大数据分布式计算的发展及Impala的应用场景,对比Hive、MapReduce、Spark等类似框架讲解内存式计算原理,基于Impala构建高性能交互式SQL分析平台 课程亮点 1,知识体系完备,从小白到大神各阶段读者均能学有所获。 2,生动形象,化繁为简,讲解通俗易懂。 3,结合工作实践及分析应用,培养解决实际问题的能力。 4,每一块知识点, 都有配套案例, 学习不再迷茫。 适用人群 1、对大数据感兴趣的在校生及应届毕业生。 2、对目前职业有进一步提升要求,希望从事大数据行业高薪工作的在职人员。 3、对大数据行业感兴趣的相关人员。 课程内容 第一章:内存式计算发展 1.分布式计算的发展 2.大数据分布式计算分类 3.Impala内存式计算诞生 第二章:Impala原理初探 1.Impala的设计思想 2.Impala与Hive之间的联系 3.Impala的分布式架构详解 4.Impala角色概念详解 第三章:基于Cloudera镜像部署分布式Impala 1.基于CDH5.14构建本地Yum镜像 2.企业级分布式Impala部署 3.企业级配置与Hadoop集成 4.企业级配置与Hive集成 5.主从架构及元数据服务管理 第四章:Impala企业实战开发案例 1.基于企业案例实现Impala集群管理 2.Impala最全SQL语法详解 3.实战开发Impala数据库与表管理 4.基于分析案例实现Impala数据管理 5.Impala与应用系统集成JDBC 第五章:Impala原理深入 1.Impala各角色功能详解 2.Impala任务提交原理 3.Impala元数据同步原理
2021-10-29 15:05:18 2KB Impala SQL分析 大数据 分布式计算
销售数据分布PowerBI示例图,内含各销售渠道、各区域、各产品类别、月份的销售情况,销售目标和销售额的分布
2021-10-29 00:30:00 40KB PowerBI
1
这是谷歌三大论文之一的 MapReduce: Simplified Data Processing on Large Clusters 英文原文。我的翻译可以见https://blog.csdn.net/m0_37809890/article/details/87830686
2021-10-20 14:16:57 187KB 大数据 分布式
1
Distributed.Systems.An.Algorithmic.Approach.2nd.Edition 好书
2021-09-05 18:50:54 3.47MB 大数据 分布式
1
本书论述在设计和建造数据仓库中涉及的所有主要问题,论述分析型环境(决策支持系统环境)以及在这种环境中的数据构造。主要内容包括数据仓库的设计与建造步骤,传统系统到数据仓库的迁移,数据仓库的数据粒度、数据分割、元数据管理、外部数据与非结构化数据,分布式数据仓库、高级管理人员信息系统和数据仓库的设计评审等。 本书主要是面向数据仓库的设计、开发和管理人员,以及构造和使用现代信息系统的人员,也适于信息处理方面的高校师生和从事传统数据库系统技术工作的人阅读。 目录 译者序 审、译者简介 前言 第1章 决策支持系统的发展 1 1.1 演化 1 1.2 直接存取存储设备的产生 2 1.3 个人计算机/第四代编程语言技术 3 1.4 进入抽取程序 3 1.5 蜘蛛网 4 1.6 自然演化体系结构的问题 5 1.6.1 数据缺乏可信性 5 1.6.2 生产率问题 8 1.6.3 从数据到信息 10 1.6.4 方法的变迁 11 1.7 体系结构设计环境 12 1.7.1 体系结构设计环境的层次 13 1.7.2 集成 14 1.8 用户是谁 15 1.9 开发生命周期 15 1.10 硬件利用模式 16 1.11 建立重建工程的舞台 16 1.12 监控数据仓库环境 17 1.13 小结 19 第2章 数据仓库环境 20 2.1 数据仓库的结构 22 2.2 面向主题 23 2.3 第1天到第n天的现象 26 2.4 粒度 28 2.4.1 粒度的一个例子 29 2.4.2 粒度的双重级别 31 2.5 分割问题 34 2.6 样本数据库 34 2.7 数据分割 35 2.8 数据仓库中的数据组织 37 2.9 数据仓库—标准手册 41 2.10 审计和数据仓库 41 2.11 成本合理性 41 2.12 清理仓库数据 42 2.13 报表和体系结构设计环境 42 2.14 机遇性的操作型窗口 43 2.15 小结 44 第3章 设计数据仓库 45 3.1 从操作型数据开始 45 3.2 数据/过程模型和体系结构设计环境 49 3.3 数据仓库和数据模型 50 3.3.1 数据模型 52 3.3.2 中间层数据模型 54 3.3.3 物理数据模型 58 3.4 数据模型和反复开发 59 3.5 规范化/反规范化 60 3.6 数据仓库中的快照 65 3.7 元数据 66 3.8 数据仓库中的管理参照表 66 3.9 数据周期 67 3.10 转换和集成的复杂性 70 3.11 触发数据仓库记录 71 3.11.1 事件 72 3.11.2 快照的构成 72 3.11.3 一些例子 72 3.12 简要记录 73 3.13 管理大量数据 74 3.14 创建多个简要记录 75 3.15 从数据仓库环境到操作型环境 75 3.16 正常处理 75 3.17 数据仓库数据的直接访问 76 3.18 数据仓库数据的间接访问 76 3.18.1 航空公司的佣金计算系统 76 3.18.2 零售个性化系统 78 3.18.3 信用审核 80 3.19 数据仓库数据的间接利用 82 3.20 星型连接 83 3.21 小结 86 第4章 数据仓库中的粒度 87 4.1 粗略估算 87 4.2 粒度划分过程的输入 88 4.3 双重或单一的粒度? 88 4.4 确定粒度的级别 89 4.5 一些反馈循环技巧 90 4.6 粒度的级别—以银行环境为例 90 4.7 小结 95 第5章 数据仓库和技术 96 5.1 管理大量数据 96 5.2 管理多介质 97 5.3 索引/监视数据 97 5.4 多种技术的接口 97 5.5 程序员/设计者对数据存放位置的控制 98 5.6 数据的并行存储/管理 99 5.7 元数据管理 99 5.8 语言接口 99 5.9 数据的高效装入 99 5.10 高效索引的利用 100 5.11 数据压缩 101 5.12 复合键码 101 5.13 变长数据 101 5.14 加锁管理 102 5.15 单独索引处理 102 5.16 快速恢复 102 5.17 其他的技术特征 102 5.18 DBMS类型和数据仓库 102 5.19 改变DBMS技术 104 5.20 多维DBMS和数据仓库 104 5.21 双重粒度级 109 5.22 数据
2021-08-14 22:51:57 6.66MB 数据仓库
1