第三章 载波频偏估计算法的研究 相干检测通信系统接收机的特点是利用一个本振激光器(LO)与接收到的 载波调制信号进行相干以获得基带信号。理论上,要求本振激光器的振荡频率与 信号载波的频率完全相同。但实际上,光通信系统中激光器的振荡频率高达几百 THz,在目前的光器件的工艺条件下,两个激光器的振荡频率与我们所预先设置 的振荡频率都不可能完全吻合,即每个激光器都肯定有一定量的振荡频率偏移。 假设每个激光器的可能的振荡频偏的范围是[-X,+X]Hz,则两个激光器的相对频 偏(载波频偏)的范围就可能为[.2)(’+2X]Hz。载波频偏估计算法的目的就是通 过对离散数字基带信号的处理,去除载波频偏对调相系统中符号相位的影响。 目前应用于相干光传输系统接收机中的前馈式全数字载波频偏估计算法,主 要有两种,分别为四次方频偏估计算法和基于预判决的频偏估计算法。本章详述 了这两种算法的原理、算法参数,给出了这两种算法在l 12Gb/s PM.DQPSK系 统中的仿真结果。针对目前硬件实现所面临的器件处理速率不足这一重要问题, 设计了这两种算法的并行处理结构的方案。此外,还设计了基于预判决的频偏估 计算法的初始化方案。最后,横向比较了现有的几种载波频偏估计算法。 3.1四次方频偏估计算法 3.1.1四次方频偏估计算法的原理 四次方频偏估计算法【lI】是根据M次方频偏估计算法而来的。M次方频偏估 计算法,是应用于相位调制相干接收系统中,去除本地振荡和信号载波之间的频 率偏差对调相信号的基带信号相位的损伤。之所以叫做M次方,是因为算法通 过对复数符号进行M次方运算,从而利用调制信息相位的M倍为一个恒定不变 的相位值这一结论,去除调制信息相位并进行频偏估计。宅E(D)QPS'K调制方式 下,M=4,M次方频偏估计算法就可以称为“四次方频偏估计算法"。该算法是 一种前馈式频偏估计算法,无需反馈环路。 四次方频偏估计算法的原理图如图3.1所示。 图3-1四次方频偏估计算法原理框图 14
2025-09-23 10:44:55 2.69MB 光纤,信号
1
只要任何集成uiview的类,通过导入该分类,引入头文件,一行代码即可以方便给图片或者view添加水印
2025-09-11 13:32:33 2KB ios 数据挖掘 人工智能 机器学习
1
内容概要:本文介绍了基于Kerala数据集的洪水暴雨内涝预测模型,旨在利用机器学习算法预测洪水发生的可能性。文中详细探讨了五种机器学习算法——KNN分类、逻辑回归、支持向量机、决策树和随机森林的具体应用及其优劣。通过对Kerala地区的降雨数据进行建模和验证,最终选出了表现最优的模型。文章不仅提供了完整的代码示例和注释,还涵盖了数据预处理、特征选择、模型训练与评估等多个关键环节。 适合人群:对机器学习感兴趣的研究人员、数据科学家以及希望了解如何运用机器学习解决实际问题的技术爱好者。 使用场景及目标:适用于需要进行自然灾害预测的机构和个人,特别是那些关注洪水、暴雨和内涝等气象灾害的人群。通过学习本文,读者能够掌握如何构建和优化机器学习模型,从而为防灾减灾提供科学依据。 其他说明:虽然本文主要聚焦于洪水预测,但它所涉及的方法论同样适用于其他类型的自然灾难预测任务,如地震预警、台风路径预测等。此外,文中提供的代码和数据集可以帮助读者快速上手实践,进一步加深对机器学习的理解。
2025-09-11 09:44:22 644KB 机器学习 数据挖掘 决策树 随机森林
1
RapidMiner软件安装包,也叫:AI Studio 2025.0
2025-09-03 19:49:20 534.45MB AI 数据分析 数据挖掘 机器学习
1
整套大数据课程从hadoop入门开始,由浅入深,内置“hadoop源码解析与企业应用开发实战”,“Hive开发实战”,“Hbase开发实战”,“Spark,mahout,sqoop,storm诸模块开发实战”,“数据挖掘基础。这个系列课程有几个板块组成,所以学员可以按照自己的实际情况选择学习。例如,对于只需要了解hadoop基本编程的人,只需要选择“hadoop源码解析与企业应用开发实战”模块就可以了;对于立志于从事大数据领域的零起点人员,可以选择四个板块依次学习;对于已经有一定基础的hadoop开发人员,你可以根据自己的情况,选择学习模块,而不必4个板块从头开始学。 特点1:真正做到从0开始,从入门到精通 特点2:适合不同基础的学员学习 特点3:阶梯式课程,每个阶段都有明确的主题和目标 第1周 数据分析基础 要点 数据分析流程、方法论(PEST、5W2H、逻辑树)、基础数据分析方法、数据分析师能力层级、数据的度量、探索、抽样、原理及实际操作,结合SPSS工具使用 第2周 数据挖掘基础 要点(数据挖掘概念、流程、重要环节、基础数据处理方法(缺失值、极值)、关联性分析方法(相关分析、方差分析、卡方分析)、原理及实际操作 第3周 数据挖掘工具介绍及Modeler软件使用 要点 使用Modeler,实际数据操作,为后续课程准备) 第4周 挖掘-分类 要点(决策树 C5.0、逻辑回归,最常用的二种算法,原理及实际建模操作) 第5周 挖掘-聚类 要点(层次聚类、kmeans)、挖掘-关联(Apriori),挖掘-预测(线性回归,指数平滑,移动平均), 原理及实际建模操作 第6周 数据挖掘实战 要点(以目标客户挖掘为例,从业务分析、方案制定、数据处理、数据准备、变量筛选、建模、评测、部署各个环节,使用Modeler工具,讲述建模的全过程)
2025-08-23 11:13:30 74B Hadoop 数据挖掘
1
Orange3 是一个开源的机器学习和数据可视化桌面软件。它允许你通过简单的拖放技术来创建数据分析工作流程。Orange3 提供了一个友好的图形化用户界面,非常适合初学者使用,同时也为熟练的数据科学家提供了数据探索和建模的强大功能。 该资源是用官网提供的免安装压缩版软件包整合了汉化文件,无需手动安装 python 环境,解压即可使用,压缩包内提供了一键汉化和恢复的批处理脚本。 数据挖掘与可视化工具Orange3是一款开源的数据分析软件,具备机器学习和数据可视化两大核心功能。其以图形化界面著称,让使用者通过简单的拖放操作来构建数据分析的流程,适合初学者和有经验的数据科学家使用。Orange3的界面设计友好,即便是没有深厚技术背景的用户也能较快上手,实现数据的探索和分析。 在机器学习领域,Orange3提供了多种学习算法和模型,用户可以根据不同的数据集和需求选择合适的算法进行训练和验证。它支持分类、回归、聚类等多种学习任务,且能够对模型进行参数调整以优化性能。此外,Orange3还配备了用于特征选择和数据处理的工具,以帮助用户清洗和转换数据。 数据可视化是Orange3的另一大亮点。它支持多种图表和图形的生成,如散点图、线形图、热力图等,能够直观地展示数据的分布和关联性。通过可视化的手段,用户能够更容易地识别数据中的模式和异常点,这在数据分析中是非常重要的一步。 Orange3还具备扩展性,用户可以通过安装额外的插件来增加新的功能,适应更多样化的分析需求。它还支持Python语言,这意味着用户可以利用Python的强大库来增强Orange3的功能,或在Orange3中运行Python脚本,实现更加复杂的数据处理和分析任务。 官方提供的免安装压缩版Orange3软件包整合了汉化文件,使得中文用户能够直接使用,无需经历复杂的安装和配置过程。压缩包内包含了批处理脚本,用户通过简单的点击即可实现一键汉化或恢复英文界面,极大地降低了使用门槛。 Orange3作为一款集数据挖掘和可视化于一体的强大工具,其简易的操作方式和强大的功能集合使其成为数据处理领域中不可多得的软件。无论是个人用户还是专业人士,都能从中受益,提高工作效率和数据分析的准确性。
2025-08-21 16:01:21 549.32MB 数据挖掘 可视化 python 机器学习
1
机器人操作系统(ROS)是为机器人应用开发提供支持的一系列软件框架和工具的集合,它是一套用于设计和构建机器人应用的开源工具集,包括硬件抽象描述、底层设备控制、常用功能实现、进程间消息传递和包管理等。ROS最初由斯坦福大学的Willow Garage机器人公司开发,并广泛应用于学术界和工业界。 Gazebo仿真器是一个高逼真度的机器人仿真环境,它支持多机器人在同一环境下协同仿真,并能模拟各种物理环境,如风、水、碰撞、摩擦等。Gazebo可以集成到ROS中,为ROS提供强大的仿真支持,这使得开发者可以在不实际接触硬件的情况下进行机器人编程和测试。 挖掘机是一种大型的挖掘机械,广泛应用于建筑、采矿、农业等领域。将ROS和Gazebo应用于挖掘机的仿真控制中,能够有效模拟挖掘机在各种复杂工况下的工作情况,这不仅可以降低实验成本,还可以在不安全的环境中进行操作训练,从而提高操作人员的安全性。 通过本套文件内容,用户可以学习到如何将ROS与Gazebo结合起来,以实现挖掘机的仿真控制。具体而言,用户将接触到以下几点知识: 用户需要掌握ROS的基本概念和使用方法,包括ROS节点、话题、消息、服务、参数服务器、包等基础知识。这将有助于用户在ROS框架下进行有效的编程。 用户将学习到如何安装和配置Gazebo仿真器,以及如何在ROS环境中启动Gazebo仿真环境。了解Gazebo的工作原理和使用方法对于构建逼真的挖掘机模型至关重要。 接着,用户需要学习如何在ROS中创建挖掘机的模型,并将其导入到Gazebo仿真环境中。这将涉及到使用URDF(通用机器人描述格式)或XACRO(可扩展机器人配置语言)等工具对挖掘机的物理结构和运动学进行描述。 之后,用户需要掌握如何通过编写ROS节点来控制挖掘机模型的行为,包括实现挖掘、旋转、抬升等操作。这需要用户了解ROS的消息传递机制,以及如何编写相应的服务和客户端代码。 此外,用户还将学习到如何利用ROS强大的数据处理和分析工具,如rostopic、rosnode、rosbag等,对挖掘机仿真过程中的数据进行监控和分析,以优化控制策略和仿真效果。 用户可能需要进行一些高级应用的学习,比如使用ROS进行多机器人协同仿真,或者将传感器数据集成到仿真中,使仿真环境更接近现实。 本套文件内容将为用户构建一个完整的从基础到高级的ROS挖掘机Gazebo仿真控制系统的学习路径。通过对这些知识的学习和实践,用户将能够在虚拟环境中实现对挖掘机的有效控制,并为未来在真实环境中的应用打下坚实的基础。
2025-08-17 21:45:33 2.9MB
1
在本项目中,通过数据科学和AI的方法,分析挖掘人力资源流失问题,并基于机器学习构建解决问题的方法,并且,我们通过对AI模型的反向解释,可以深入理解导致人员流失的主要因素,HR部门也可以根据分析做出正确的决定。
2025-08-04 20:21:46 105KB 人工智能 机器学习
1
内容概要:本文档详细介绍了使用Matlab实现麻雀搜索算法(SSA)优化模糊C均值聚类(FCM)的项目实例,涵盖模型描述及示例代码。SSA-FCM算法结合了SSA的全局搜索能力和FCM的聚类功能,旨在解决传统FCM算法易陷入局部最优解的问题,提升聚类精度、收敛速度、全局搜索能力和稳定性。文档还探讨了该算法在图像处理、医学诊断、社交网络分析、生态环境监测、生物信息学、金融风险评估和教育领域的广泛应用,并提供了详细的项目模型架构和代码示例,包括数据预处理、SSA初始化与优化、FCM聚类、SSA-FCM优化及结果分析与评估模块。; 适合人群:具备一定编程基础,对聚类算法和优化算法感兴趣的科研人员、研究生以及从事数据挖掘和机器学习领域的工程师。; 使用场景及目标:①提高FCM算法的聚类精度,优化其收敛速度;②增强算法的全局搜索能力,提高聚类结果的稳定性;③解决高维数据处理、初始值敏感性和内存消耗等问题;④为图像处理、医学诊断、社交网络分析等多个领域提供高效的数据处理解决方案。; 其他说明:此资源不仅提供了详细的算法实现和代码示例,还深入探讨了SSA-FCM算法的特点与创新,强调了优化与融合的重要性。在学习过程中,建议读者结合理论知识和实际代码进行实践,并关注算法参数的选择和调整,以达到最佳的聚类效果。
2025-07-29 15:00:16 35KB FCM聚类 Matlab 优化算法 大数据分析
1
徐工挖掘机电路图,电气原理图,电气控制原理图
2025-07-29 11:43:01 426KB 挖掘机电路
1