资源中是《计算机视觉中的数学方法》对应的课件。本书由射影几何、矩阵与张量、模型估计三个部分组成,它们是三维计算机视觉所涉及到的基本数学理论与方法。I.射影几何学是三维计算机视觉的数学理论基础,是从事计算机视觉研究所必备的数学知识。II.矩阵与张量是描述和解决计算机视觉问题的必要数学工具,视觉领域研究人员都应该掌握这门数学。III.模型估计是三维计算机视觉的基本问题,通常涉及到变换或某种数学量的估计。
1
更改组件,看看立方体变形会发生什么。
2023-04-01 17:21:55 2KB matlab
1
matlab张量积代码矩阵乘积状态Langevin (1)在MATLAB中针对有限自旋链实现矩阵乘积状态Langevin方程,以及(2)对于无限自旋链实现时间相关的变分原理()。 矩阵乘积状态Langevin方程描述了与环境热接触的系统的轨迹。 它扩展了随时间变化的变分原理,用于演化具有附加噪声和摩擦项的矩阵乘积状态。 安装 下载此存储库,并将其文件夹和所有子文件夹添加到MATLAB路径。 从下载NCON软件包并将其添加到MATLAB路径。 代码示例 在此示例中,我们模拟了有限旋转链的随机哈密顿量下的噪声演化。 首先,我们需要指定系统。 我们将定义spinDimList来编码4个局部尺寸为spinDimList和4的自旋。 spinDimList = [2 4 3 4]; 我们想将键的维数限制为3: Dmax = 3; 现在,让我们使用randomizedSystem_localH()函数生成初始状态,汉密尔顿和环境。 我们还将温度设置为较低,并在无摩擦状态下工作(这是更快的!): [mpsInit,Hcell,EnvParams] = randomizedSystem_localH(
2023-03-28 09:31:18 213KB 系统开源
1
张量投票算法利用人类感知功能原理进行计算,它具有较强的鲁棒性、非迭代性、参数唯一性等特性,其非迭代性具有节省计算时间的显著性特征,因此,广泛应用于图像线特征提取,但在一些含有复杂噪声的图像中,却不能得到更为连续的显著线特征信息。本文针对此问题,提出一种改进的具有迭代性的张量投票算法,它主要是对投票域进行迭代改进,使改进后的张量投票算法可以提取更为连续的显著线特征,且与传统的张量投票算法相比,本文算法既缩短了计算时间,又提取了更为连续的线特征图像。
1
深度学习通过训练样本进行特征识别,已经被广泛应用于道路提取领域。该方法不局限于特定类型的影像,但是受训练样本数量和计算机硬件的限制,所提取的道路会有断裂和噪声。针对上述问题,使用VGG卷积神经网络对道路进行初步提取后引入张量投票方法进行优化处理。首先通过影像变换、随机裁剪、过采样等方法对样本进行多模式扩充,进而训练VGG卷积神经网络模型;其次利用该网络从原始影像中初步分割道路面,接着对道路面的二值影像进行张量投票获取道路的显著性信息;最后在特征提取时针对显著性信息加入阈值获取道路面。实验结果表明,所提方法提取道路的召回率与正确率均达90%以上,与其他传统方法相比具有更高的精度,验证了所提方法的有效性。
2023-03-21 15:04:09 14.68MB 图像处理 道路提取 卷积神经 张量投票
1
图像矩阵matlab代码IRTPCA代码 matlab代码适用于论文``通过低秩核心矩阵改进的稳健张量主成分分析''。 您可以从中找到该论文。 tsvd的某些功能,您也可以参考。 图像来自伯克利细分数据集。 基于数据集的工作应引用以下文件: @InProceedings {MartinFTM01, 作者= {D。 马丁(Martin)和福克斯(C. Fowlkes)和塔尔(T. Tal)和马里克(J. Malik)}, title = {人类分割的自然图像数据库及其在评估分割算法和测量生态统计中的应用}, booktitle = {Proc。 第八届国际会议计算机视觉}, 年= {2001}, 月= {七月}, 音量= {2}, 页数= {416--423}} 这些视频来自信息通信研究所(I2R)和背景模型挑战数据集。 L. Li,W。Huang,IYH Gu和Q. Tian,“用于前景对象检测的复杂背景的统计建模”,《 IEEE Transactions on Image Processing》,第1卷。 13号11,第1459-72页,2004年。 A. Vacavant,T。Ch
2023-03-10 23:08:59 23.81MB 系统开源
1
基于张量补全的交通速度数据插补方法
2023-02-26 15:57:37 2.09MB 研究论文
1
张量分析,A Brief on Tensor Analysis (2nd Ed)(T),djvu版本,资源来自互联网
2023-02-09 12:02:55 3.09MB 张量分析
1
多方面张量分析,Tensor Analysis on Manifolds,资源来自互联网
2023-02-09 12:01:49 2.88MB 张量分析
1
语音识别 使用TensorFlow实现语音识别系统。 中篇文章的更多说明: : 二手图书馆 pip install tensorflow tensorflow_io 文件说明 test_load.py 加载Mozilla Common Voice的标签文件: : test_lstm.py 简单的LSTM模型可预测单词序列中的下一个单词。 它使用Mozilla Common Voice数据集标签文件。 test_trad.py Seq2Seq模型以与输入相同的语言翻译句子。 它使用Mozilla Common Voice数据集标签文件。 test_words.py 简单的LSTM模型可将音频转换为单词。 它使用语音命令数据集: : test_wordsFr.py 简单的LSTM模型可将音频转换为法语单词。 它使用此存储库中包含的自制数据集。 test_words_com
2023-01-30 10:23:58 13.83MB Python
1