为有效预测锂离子电池剩余寿命,引入了粒子滤波算法。对粒子滤波的基本概念和算法实现步骤进行介绍,在给出锂离子电池寿命统计数据的基础上,应用粒子滤波算法计算其剩余寿命,解决了锂离子电池剩余寿命预测的问题。对相同的锂离子电池统计数据,利用扩展卡尔曼滤波方法计算进行对比实验。分析结果表明:粒子滤波算法比扩展卡尔曼滤波算法可靠,能较好地预测出锂离子电池的剩余寿命,误差小于5%。
2022-03-06 13:21:30 1.23MB 自然科学 论文
1
基于实时温度监测的功率IGBT模块的寿命预测模型,左帅,李志刚,寿命预测是功率器件可靠性评估的重要内容。一方面它能及时反映器件的可靠性,为设备检测及维护提供理论支持;另一方面它可以为制
2022-03-06 12:56:23 338KB 首发论文
1
粒子滤波在单目标跟踪多目标跟踪电池寿命预测中的应用-粒子滤波算法原理及在多目标跟踪中的应用(Matlab程序).ppt 本帖最后由 huangxu_love 于 2013-7-26 12:50 编辑 推荐一本学习粒子滤波原理的好资料《粒子滤波原理及应用仿真》,本手册主要介绍粒子滤波的基本原理和其在非线性系统的应用。同时本手册最大的优点是介绍原理和应用的同时,给出实现例子的matlab代码程序,方便读者对照公式,理解代码。因此,它是相关方面的研究者快速上手和进入研究领域的快捷工具。同时,对于有一定基础的研究者,可以在本手册提供代码的基础上,做算法进一步改进和深入研究。 如果你有编程或者原理咨询,可以联系我的QQ345194112. 目  录第一部分 原理篇                                                                1第一章 概述                                                                  11.1 粒子滤波的发展历史                                                        11.2 粒子滤波的优缺点                                                         21.3 粒子滤波的应用领域                                                        3第二章 蒙特卡洛方法                                                          42.1 概念和定义                                                                42.2 蒙特卡洛模拟仿真程序                                                     52.2.1硬币投掷实验(1)                                                        52.2.2硬币投掷实验(2)                                                      52.2.3古典概率实验                                                              64.2.4几何概率模拟实验                                                         72.2.5复杂概率模拟实验                                                          72.3 蒙特卡洛理论基础                                                           102.3.1大数定律                                                                  102.3.2中心极限定律                                                              102.3.3蒙特卡洛的要点                                                           112.4 蒙特卡洛方法的应用                                                        132.4.1 Buffon实验及仿真程序                                                      132.4.2 蒙特卡洛方法计算定积分的仿真程序                                          14第三章 粒子滤波                                                              193.1 粒子滤波概述                                                              193.1.1 蒙特卡洛采样原理                                                         193.1.2 贝叶斯重要性采样                                                         203.1.3 序列重要性抽样(SIS)滤波器                                                   203.1.4 Bootstrap/SIR滤波器                                                       223.2 粒子滤波重采样方法实现程序                                                233.2.1 随机重采样程序                                                            243.2.2 多项式重采样程序                                                         253.2.3 系统重采样程序                                                          263.2.4 残差重采样程序                                                            273.3 粒子滤波原理                                                             283.3.1 高斯模型下粒子滤波的实例程序                                              28第二部分 应用篇                                                                33第四章 粒子滤波在单目标跟踪中的应用                                          334.1 目标跟踪过程描述                                                         334.2 单站单目标跟踪系统建模                                                    344.3 单站单目标观测距离的系统及仿真程序                                        374.3.1 基于距离的系统模型                                                      374.3.2 基于距离的跟踪系统仿真程序                                             384.4 单站单目标纯方位角度观测系统及仿真程序                                    434.4.1 纯方位目标跟踪系统模型                                                  434.4.2 纯方位跟踪系统仿真程序                                                  444.5 多站单目标纯方位角度观测系统及仿真程序                                     474.5.1 多站纯方位目标跟踪系统模型                                               474.5.2 多站纯方位跟踪系统仿真程序                                              48第五章 粒子滤波在多目标跟踪中的应用                                          545.1 多目标跟踪系统建模                                                        545.1.1 单站多目标跟踪系统建模                                                  545.1.2 多站多目标跟踪系统建模                                                  555.1.3 单站多目标线性跟踪系统的建模仿真程序                                     555.1.4 多站多目标非线性跟踪系统的建模仿真程序                                  575.2 多目标跟踪分类算法                                                        615.2.1 多目标数据融合概述                                                       615.2.2 近邻法分类算法及程序                                                     625.2.3 近邻法用于目标跟踪中的航迹关联及算法程序                                665.2.4 K-近邻法分类算法                                                          695.3 粒子滤波用于多目标跟算法中的状态估计                                     705.3.1 原理介绍                                                                 705.3.2 基于近邻法的多目标跟踪粒子滤波程序                                      71第六章 粒子滤波在电池寿命预测中的应用                                         766.1 概述                                                                     766.2 电池寿命预测的模型                                                        786.3 基于粒子滤波的电池寿命预测仿真程序                                        81
2022-02-25 22:36:59 520KB matlab
1
针对球轴承的剩余寿命预测问题,基于自组织映射(Self organizing map,SOM)和反向传播(Back propagation, BP)两种神经网络,提出一套新的预测球轴承剩余寿命的方法体系。深入对比分析几种不同轴承衰退指标的优缺点,利用三套时间域衰退指标和三套频率域衰退指标,包括一套新设计的指标,训练自组织映射神经网络。将源自于SOM的最小量化误差(Minimum quantization error, MQE)作为新的衰退指标,建立一套轴承性能数据库。针对球轴承衰退期,训练一套BP神经网络
2022-01-12 18:15:08 74KB 工程技术 论文
1
寿命预测与故障诊断作为复杂装备系统可靠性分析中的两类重要问题,基于数据驱动的机器学习分析方法具有良好的 工程效果;文章系统地从故障预测与寿命估算及后续健康管理的实际工程需求出发,深入分析该类型系统因性能衰退出现的早期 故障诊断与维护时间确定的共性难点问题并深度挖掘其所对应的关键科学问题,对机器学习算法在其中的应用与研究进行综述, 重点阐述了人工神经网络、支持向量机等机器学习算法,对于完善可靠性分析方法,进一步推动机器学习算法在可靠性工程领域 的运用具有一定的指导意义。
2022-01-05 20:09:31 1.02MB 机器学习 故障预测
1
美国西储大学轴承寿命预测
2021-12-15 17:10:27 17KB SVR EEMD能量熵 PCA
1
基于机器学习的设备剩余寿命预测方法综述
2021-12-11 14:56:48 549KB 研究论文
1
一种基于粒子滤波理论的IGBT剩余寿命预测方法,龙兵,朱炯炯,随着IGBT应用日趋广泛,对于IGBT的视情维修需求也日趋紧迫。本文基于粒子滤波理论,提出一种IGBT的寿命预测方法,通过温度循环实验获
2021-12-07 14:08:28 606KB 故障预测
1
matlab预测电池寿命程序代码循环寿命预测使用机器学习 这项研究基于斯坦福大学学生的工作,题为“容量退化前电池循环寿命的数据驱动预测”。 他们创建了一个数据集,这是同类中最大的开源,并使用机器学习来预测锂离子电池寿命。 我研究的目的是首先重新创建他们的数据,然后最终创建我自己的模型,以与使用相同数据集的该项目的准确性相媲美。 本研究中使用的数据集可在 . results_recreation.m 目的:在matlab上加载三批数据并组合成一个大数据集。 改变循环寿命的一些不正确的值。 然后,代码提取并处理相关数据以创建运行弹性网络模型所需的 csv 文件。 需要:Matlab,三个数据集 典型的运行时间是几分钟 方差_数据.csv 目的:包含所有 124 个电池的循环寿命的方差数据的 csv 文件。 该文件通过为每列提供标题而略有改动。 运行python程序时需要这样做。 要求:无 Data_recreation.ipynb 目的:为方差、循环寿命数据集生成弹性网络。 此代码将 csvfile 调用到数据集中,并准备要放入 Elastic net 的数据。 数据按照与斯坦福论文相同的
2021-11-16 14:46:39 28KB 系统开源
1
剩余使用寿命(RUL)预测在预测和健康管理(PHM)中起着至关重要的作用,以提高可靠性并降低众多机械系统的周期成本。 深度学习(DL)模型,尤其是深度卷积神经网络(DCNN),在RUL预测中正变得越来越流行,从而在最近的研究中取得了最新的成果。 大多数DL模型仅提供目标RUL的点估计,但是非常需要为任何RUL估计具有关联的置信区间。 为了改进现有方法,我们构建了一个概率RUL预测框架,以基于参数和非参数方法来估计目标输出的概率密度。 模型输出是对目标RUL的概率密度的估计,而不仅仅是单点估计。 所提出的方法的主要优点是该方法自然可以提供目标预测的置信区间(不确定性)。 我们通过一个简单的DCNN模型,在公开可用的涡轮发动机退化模拟数据集上验证了我们构建的框架的有效性。 源代码将在https://github.com/ZhaoZhibin/Probabilistic_RUL_Prediction中发布。
2021-11-15 19:46:17 573KB Remaining useful life; Probabilistic
1