算法功能:建立图像特征和图像人数的数学关系 算法输入:训练样本图像1,2…K 算法输出:模型估计参数 ,参考图像 算法流程:1)对训练样本图像进行分块处理(算法1.1); 2)通过算法1.2,计算训练样本各个对应分块的ALBP特征归一化,再用K-means算法(可使用opencv等算法库实现,不再描述其算法),将图像块分成k(k
2021-12-31 09:13:59 5.3MB 人群密度估计
1
本文研究了基于视频和图象处理的智能化人群密度估计的方法。首先介绍 了人群密度检测的国内外发展现状及其基本理论。通过分析可知,基于像素统 计的密度估计方法较为简单,但是当人群密度较高、人群遮挡严重时误差较大; 使用纹理分析的方法可以充分利用图像的纹理信息,但是算法复杂度较高。
2021-12-27 17:57:05 3.53MB 人群监控,密度估计,纹理分析
1
§1.2.核密度估计
2021-12-22 15:11:34 648KB EM 核估计
1
多元正态分布参数最大似然估计
2021-12-21 16:02:17 340KB 概率密度估计
1
针对现有方法在高密度场景人群密度估计不够准确的问题,提出了Gabor滤波结合最小二乘支持向量机(LS-SVM)的人群密度估计算法。首先,设计一组单独的二维Gabor滤波器应用在人群图像中以产生相应的滤波通道。然后,通过计算这些通道上灰度值的均值和方差得到特征向量。最后,采用最小二乘支持向量机分析特征向量和人数之间的关系,完成最终的密度估计。在UCSD数据集和Mall数据集上的实验显示,提出的方法实现了更快的执行时间和更好的精度,证明了基于Gabor滤波器和LS-SVM的人群密度估计算法的有效性。
1
一个 m 文件中高维的快速自适应核密度估计。 提供最佳精度/速度权衡,通过参数“gam”控制; 要提高“大数据”应用程序的速度,请使用小“gam”; 通常gam = n ^(1/2),其中“ n”是点数。 ' 用法:[pdf,X1,X2]=akde(X,grid,gam) 输入: X - 数据为 'n' 乘 'd' 向量; 网格 - 计算 pdf 的维度为 'd' 的 'm' 个点; 默认仅提供给二维数据; 请参阅下面有关如何在更高维度中构建它的示例; gam -(可选)成本/精度权衡参数,其中 gam<n; 默认值为 gam=ceil(n^(1/2)); 更大的价值可能会导致更好的准确性,但会降低速度; 要加速代码,请使用较小的“gam”; 输出: pdf - 'grid' 处的估计密度值X1,X2 - 默认网格(仅用于二维数据) 请参阅有关如何在更高维度上构建网格的示例 二维示例
2021-11-30 15:09:10 3KB matlab
1
快速KDE 通过原始快速高斯变换优化并使用高斯函数的核密度估计的C库。 该库将显着提高高斯函数在 KDE 上的性能。但如果您需要严格的计算,则不应使用该库。 因为快速高斯变换的误差很小。 ##安装(你需要 gmake 和 gcc。) 1.如果你用intel CPU和32bit Linux执行,输入以下内容可以得到经过SSE2优化的代码。 出口 CFLAGS=-DENABLE_ASM (在 bash 的情况下) 2.输入以下内容, 制作 3.将“fgt.o”、“kde.o”、“kde.h”添加到您的项目中。 ##用法阅读 kde.h 和 example.c。
2021-11-26 00:17:42 12KB Assembly
1
识别沿高速公路的车辆碰撞高风险位置对于理解车辆碰撞的原因并基于分析确定有效的对策非常重要。 本文提出了一种GIS方法来检查车辆碰撞的空间模式,并确定它们是否在空间上聚集,分散或随机分布。 使用Moran的I和Getis-Ord Gi *统计信息来检查空间模式,对车辆碰撞数据进行聚类映射,并在高速公路上生成高风险位置。 内核密度估计(KDE)用于生成碰撞密度图,以显示碰撞的道路密度。 建议的方法是使用印第安纳州的2013年车辆碰撞数据进行评估的。 结果表明,该方法在识别车辆碰撞热点和不安全道路位置方面是有效且可靠的。
2021-11-11 15:21:17 1.64MB 空间自相关 内核密度 莫兰的 Gi
1
提出应用Copula理论建立风电场、光伏电站出力联合概率分布模型的方法。该方法不仅考虑了风电场、光伏电站出力的随机性,并且计及两者出力的相关性。根据某风光互补电站的实测出力数据,采用非参数核密度估计法,估计风电场、光伏电站出力的概率分布。选取Kendall秩相关系数作为风电场、光伏电站出力的相关性测度。利用Frank Copula函数,计算风电场、光伏电站出力的联合概率分布。以RBTS标准测试系统作为算例,对风光互补发电系统进行可靠性评估,结果表明:建立的模型能够较好地描述风光互补发电系统出力的概率特性,且考虑相关性的可靠性评估更接近实际情况。
1
密度估计(窗宽及核的比较) 窗宽小:偏差小,但方差大。表现为不够光滑。
2021-11-04 15:06:19 648KB EM 核估计
1