采用STM32F103C8T6核心板作为系统控制单元,结合相关的传感器模块和软件资源完成以STM32F103C8T6为核心的室内环境监测系统。使用超声波传感器检测距离,通过LCD显示屏显示距离;通过温湿度传感器DHT11将检测到的实时室内温湿度数据发送给主控LCD显示,同时系统能够根据设定温度自动驱动加热模块进行升温,驱动风扇进行降温,达到自动控温的目的,也可手动进行升降温控制;使用光照传感器将采集的ADC数据进行分析周围光照强度,将光照的亮弱实时数据发送给主控LCD显示;通过产生PWM波来控制LED灯的点亮程度,从而在光照不足的情况下,任意切换LED灯显示模式。 参考文章https://editor.csdn.net/md?not_checkout=1&articleId=128688706
2023-04-12 12:09:30 8.26MB stm32
1
针对室内复杂环境下无线传感器节点的信号传播状态在LOS/NLOS之间切换的现象,提出基于TDOA和RSS的可行域粒子滤波非视距定位.首先采用基于TDOA和RSS两种测距模型的假设检验方法去辨识测量信号中是否存在NLOS现象,然后采用考虑NLOS测量信息的可行域粒子滤波方法对未知移动节点的位置进行定位.仿真结果表明,所提出的方法优于最小二乘法、普通的粒子滤波算法以及仅采用RSS测距模型的粒子滤波算法,具有较高的定位精度.
1
px4_indoor_navigation 使用PX4自动驾驶仪和indoot定位系统(例如OptiTrack)进行室内导航的ROS节点集。
2023-04-11 10:32:34 12KB Python
1
本系统应用STM32F103ZET6单片机为控制处理器,加上外设备组成单片机最小系统。配以输入输出部分,通过采集温湿度、一氧化碳、甲醛、PM2.5等数据在LCD液晶上显示,内加单独时钟晶振电路,保护断电后时间参数不变,外接5v电源对整个系统供电。
2023-04-09 21:23:58 296.77MB 单片机
1
通过视觉惯性数据融合进行室内导航 这是以下论文的代码: Farnoosh,A.,Nabian,M.,Closas,P.,&Ostadabbas,S.(2018年4月)。 通过视觉惯性数据融合进行第一人称室内导航。 在位置,位置和导航专题讨论会(PLANS)中,2018 IEEE / ION(pp.1213-1222)。 IEEE。 联系人 , 内容 1.要求 这段代码是用MATLAB R2016b编写的 2.用于收集视频-IMU的iPhone应用程序 联系 ,请求访问我们的iPhone应用程序以收集频率可调的同步视频和IMU数据 2.样本视频 本文中用于实验的走廊的原始视频以及通过我们的iPhone App收集的IMU测量值都包含在./sample_video/目录中。 3.走廊视频的运行代码 运行demo_vpdetect_modular.m 此代码包含以下部分: 阅读整个视频
2023-04-06 21:20:40 8.75MB MATLAB
1
白光发光二极管(LED)的窄调制带宽限制了可见光通信(VLC)的系统容量。非正交多址接入(NOMA)技术通过功率复用可提高系统通信容量。结合直流偏置光正交频分复用(DCO-OFDM)和NOMA技术, 设计了NOMA-DCO-OFDM系统。基于递归法给出了单个LED时VLC多径信道建模方法。在考虑限幅噪声影响时, 推导了用户的信干噪比。采用分数阶功率分配、增益比功率分配和静态功率分配方法, 研究系统平均和速率随LED半功率角、光电检测器的视场角(FOV)和功率分配因子的变化规律。仿真结果表明, 系统平均和速率随着半功率角、FOV和功率分配因子的变化而变化, 可以通过优化半功率角、FOV和功率分配因子达到系统平均和速率最大化。
2023-04-06 15:06:35 7.94MB 光通信 可见光通 非正交多 直流偏置
1
室内环境健康监测机器人功能概述: 家庭生态环境健康管理机器人需要完成空气质量、环境噪音、可见光污染、进水污染监测,融合机器人本身、远程无线节点、智能家电等各路传感器检测的环境状态数据,推理出环境状态调节方案,如果需要调节环境,则机器人通过物联网输出控制指令,控制相应的室内环境调节家电设备工作,例如照明系统、空调系统、加湿机、空气净化器、智能窗帘系统及音响系统,以满足人们健康生活的需要。 家庭生态环境健康管理机器人逻辑框图: 家庭生态环境健康管理机器人采用四轮驱动的智能车结构设计,在一个长圆形的智能车底盘上,依次安装相同规格的三层PVC板,用于安装机器人所需的各种电路模块。 实物作品图:
2023-03-21 09:05:02 13.36MB 机器人 源码 电路方案
1
语义分割 用SegNet进行室内语义分割。 依赖 数据集 按照 下载 SUN RGB-D 数据集,放在 data 目录内。 $ wget http://3dvision.princeton.edu/projects/2015/SUNrgbd/data/SUNRGBD.zip $ wget http://3dvision.princeton.edu/projects/2015/SUNrgbd/data/SUNRGBDtoolbox.zip 架构 ImageNet 预训练模型 下载 放在 models 目录内。 用法 数据预处理 该数据集包含SUNRGBD V1的10335个RGBD图像,执行下述命令提取训练图像: $ python pre-process.py 像素分布: 数据集增强 图片 分割 图片 分割 训练 $ python train.py 如果想可视化训练过程,可执行: $ t
2023-03-18 08:26:30 11.86MB Python
1
基于接收信号强度的KNN室内定位算法,还有测试数据。适合初学者参考
2023-03-15 21:08:15 12KB knn定位 knn,定位算法 knn 定位
第4章行人步频探测和步长估计 第4章行人步频探测和步长估计 在行人航迹推算PDR算法中,步行速度和距离的确定,不再使用惯性导航 对加速度积分的方法,而是利用步态信号的周期性和信号统计特征与行走速度相 关的规律,采用步频探测和步长估计的方法。本章将回顾目前存在的步行速度和 距离估计算法,介绍基于多传感器平台MSP加速度计的步频探测算法和步长模 型,详细说明引入肌电信号EMG进行步频探测和步长估计的方法,并通过大量 的实验论证各种算法和模型的有效性。 4.1 传统步频探测算法和步长估计模型 如第二章介绍,在个人导航中,当GPS接收机无法正常工作时,使用自包 含传感器来辅助导航定位任务。传统惯性积分机制因为低成本加速度计的误差太 大而不可用,必须考虑其它替代方法。于是有学者根据行人步态的运动生理学特 性,提出了通过步频探测和步长估计间接地确定步行速度和距离的方法,从而避 免了积分机制对初始对准过程的苛刻要求和误差随时间累积的弊端。 然而,尽管加速度信号波形随着个人行走呈现出周期性的特征,加速度计放 置在人身上不同部位其波形和周期明显不同,如上半身的加速度波形没有stance 阶段,下半身的加速度信号具有双峰等。首先明确复步和单步的定义。复步 (Stride),又叫跨步,其步长指从一只脚脚后跟着地到相同脚再次着地的距离。 单步(Step),其步长指一只脚着地到另一只脚着地之间的距离。1个复步等同于 1个完整步态(Gait Cycle),等于2个单步(Chai,2004)。当加速度计放置在人 上半身时,其测量的信号表现出与单步对应的波形,而放置在下半身时,其测量 的信号波形随该条腿对应复步变化,可参考图2.7。 由于加速度计测量的信号包含地球重力分量,受到仪器测量噪声和行走时身 体抖动的影响,开始步频探测前,一个必要步骤为信号预处理,剔除重力分量, 消除噪声,使加速度波形特征变得更清晰,如一个跨步对应信号经过降噪后从多 峰变为单峰。常用的预处理方法有:多点平滑(Fang et al,2005),低通滤波(Jee et al,1999:Mezentsev,2005b),差分处理(Weimann et al,2007),小波去噪 (Ladetto,2000)等。 针对人身体不同部位加速度波形不同的特点,目前存在大量步频探测方法, 但是部分步频探测算法应用于具体某一类波形。目前常用的步频探测算法有: 峰值探测法(Peak Detection):针对人体行走时上半身加速度信号每步呈现 39
2023-03-10 11:16:13 5.29MB 传感器辅助 室内定位 PDR算法
1