将离散空间问题求解的蚁群算法引入连续空间, 针对多目标优化问题的特点, 提出一种用于求解带有约束
条件的多目标函数优化问题的蚁群算法. 该方法定义了连续空间中信息量的留存方式和蚂蚁的行走策略, 并将信息
素交流和基于全局最优经验指导两种寻优方式相结合, 用以加速算法收敛和维持群体的多样性. 通过3 组基准函数
来测试算法性能, 并与N SGA II 算法进行了仿真比较. 实验表明该方法搜索效率高, 向真实Pareto 前沿逼近的效果
好, 获得的解的散布范围广, 是一种求解多目标优化问题的有效方法.