梯级水电站不仅要满足电力系统运行要求,还要考虑发电和用水之间的协调,才能使综合效益最大化。提出一种兼顾年发电量和运行成本的梯级水电站长期多目标优化调度新模型。通过分别求解各个单目标优化问题和定义各单项目标的隶属度函数,把多目标问题模糊化;采用对各单项目标优化的目标值在一定范围内伸缩的方法来体现决策者的主观意愿;利用模糊最大满意度方法把多目标优化问题转化为单目标非线性规划问题;并构建了一种动态调整惯性因子的自适应粒子群算法。仿真计算验证了模型的正确性和求解方法的可行性,多目标模型比单目标模型获得了更佳的综合效益,模糊优化处理方法避免了目标权重选取的人为任意性,同时自适应粒子群算法计算速度快、收敛精度高。
1
针对环境经济发电调度问题,提出一种基于评价函数的交互式多目标优化方法并结合改进的粒子群优化的求解方法。构造的总体协调度评价函数可以较好地平衡节能和减排2个优化目标。决策者可以通过调整各单目标满意度来体现其主观愿望。该方法克服了多目标向单目标转化过程中权重系数选择的困难,增强了决策方案选择的互动性。对一个含6台发电机组的系统进行仿真分析,结果验证了该方法在求解环境经济调度问题方面的可行性和有效性。
1
基于多区域中心点预测的动态多目标优化算法.pdf
2023-02-10 09:57:43 977KB
1
目前的多目标优化算法有很多, Kalyanmoy Deb的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB自带的函数gamultiobj,该函数是基于NSGA-II改进的一种多目标优化算法。
2023-01-18 16:51:19 187KB matlab 多目标优化 NSGA
1
基于遗传算法的非支配排序算法(NSGA_II)是用于求解多目标规划问题的一种方法。 通过帕累托支配求解帕累托最优解可以有效得到多目标函数的求解结果。 为优化帕累托最优解,运用遗传算法对求解结果进行优化。 但同时遗传算法具有未成熟收敛、群体规模对性能影响大、结果受初始值影响较大等缺点,因此利用多种群遗传算法对求解结果进行进一步优化,运用移民算子联系各个种群,运用精华种群保存每代最优结果。 **运行程序请优先下载谢菲尔德大学的MATLAB遗传算法工具箱
1

将离散空间问题求解的蚁群算法引入连续空间, 针对多目标优化问题的特点, 提出一种用于求解带有约束
条件的多目标函数优化问题的蚁群算法. 该方法定义了连续空间中信息量的留存方式和蚂蚁的行走策略, 并将信息
素交流和基于全局最优经验指导两种寻优方式相结合, 用以加速算法收敛和维持群体的多样性. 通过3 组基准函数
来测试算法性能, 并与N SGA II 算法进行了仿真比较. 实验表明该方法搜索效率高, 向真实Pareto 前沿逼近的效果
好, 获得的解的散布范围广, 是一种求解多目标优化问题的有效方法.

1
智能优化算法-双层优化算法】基于双层优化算法求解多目标优化文题
2022-12-27 17:07:21 74KB matlab 算法 源码软件 开发语言
非支配排序,拥挤度计算,pareto前沿,A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II NSGA算法 NSGA算法缺陷 NSGA-II算法 总结 1. 快速非支配排序法将时间复杂度改进为O(MN2); 2.使用拥塞距离代替代替共享函数算法保持种群多样性; 引入精英保留策略。 非支配排序的复杂度较高: O(MN3) (M是目标函数的个数,N是种群大小); 缺少精英保留策略; 需要人为指定共享参数σshare(共享小生境步骤)。 NSGA: nondominated sorting genetic algorithms-非支配排序遗传算法 nondominated:非支配 例:回家,两目标(费用,时间),均越小越好 动车A(270 , 7),普快B(120 , 10),飞机C(240,2) C(240,2)支配A(270 , 7); A(270 , 7)被C(240,2)支配; B(120 , 10)和C(240,2)不可比,即非支配。 目的:得到一组非支配的解--Pareto最优解集。
2022-12-21 18:28:02 715KB 人工智能 多目标优化算法 进化算法
1
介绍了多目标优化问题的含义以及给出了多目标优化问题的数学描述。并且介绍了解决多目标优化的几种典型算法,讨论并对比了算法存在的优缺点,认为要进一步研究求解多目标优化问题的更多高效算法,若能结合各种算法的优点,处理多目标问题的效果将越来越好。
2022-12-16 15:19:47 1.63MB 多目标优化
1
workbench机械结构及多目标优化.pptx
2022-12-07 10:18:33 2.37MB