针对常见的降维方法难以有效保留多元时间序列主要特征的问题, 分析了传统主成分分析(PCA) 方法在多
元时间序列降维中的局限性, 提出一种基于共同主成分分析的多元时间序列降维方法, 并通过仿真实验比较了两种
方法的降维有效性和计算复杂度. 实验结果表明, 所提出的降维方法能够以相对较小的计算代价, 更有效地对多元时
间序列进行降维.

2023-03-20 22:44:59 230KB
1
文章应用股市中三个具有典型意义的技术指标,RSTKDJ和5日平均线建立了非线性回归预测模型,对股票的价格走势进行了短期预测。所建立的回归模型对预测某些股票的短期价格趋势提供了参考,具有一定的理论价值和实际应用价值。
2023-03-20 13:15:28 2.06MB 自然科学 论文
1
概括为量化分析洞庭湖湖区工业产值、总人口数、捕鱼量、降雨量这四个影响因素对湖水中污染物的影响力。将四个因素设为自变量,通过regress函数对其进行多元线性回归分析,得出多元线性回归函数,再将结果与原始数据进行误差分析,并进行优化。
2023-03-07 16:12:17 55KB matlab
1
多元回归分析SPSS案例.docx
2023-03-04 15:46:02 246KB 文档资料
1
《多元统计分析》期末大作业二:基于R语言
2023-02-28 16:41:26 1.66MB 多元统计分析 期末大作业 R语言
1
用Java完成多元线性回归相关算法编程。资源是从百度文库上下载的https://wenku.baidu.com/view/070d30eb988fcc22bcd126fff705cc1755275f61.html。
2023-02-24 11:49:42 146KB java 多元线性回归
1
功能磁共振成像 fMRIflows是完全自主的单变量和多变量fMRI处理管道的集合。 这包括解剖和功能上的预处理,信号混杂的估计以及在受试者和小组水平上的单变量和多变量分析。 显而易见, fMRIflows受到和其他开源项目的极大启发,并从它们的思想和解决方案中大力借鉴。 但是尽管可以被描述为“玻璃”盒子软件,但fMRIflows更像是鞋盒。 易于打开,易于理解,内部简单易用,可轻松更换和更改内部组件。 这完全是由于fMRIflows所有源代码都存储在笔记本中。 如果您正在出版物中使用fMRIflows ,请与作者 fMRIflows联系,以获取有关如何引用此工具箱的更多信息,因为该出版物目前正在准备提交。 安装及使用 使用容器 使用fMRIflows的最佳方法是直接在相应的容器( 或 )中运行它。 可以使用docker pull miykael/fmriflows命令从Docker
2023-02-20 05:20:22 18.71MB python neuroimaging fmri bids
1
向量自回归模型,可以用于分析多元时间序列相关关系,进行格兰杰因果检验、脉冲响应等等
2023-02-17 15:04:27 809KB 多元时间序列分析 var
1
原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察。 import numpy import pandas as pd import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv('Folds5x2_pp.csv') data.head() 会看到数据如下所示: 这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。 我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/
2023-02-17 12:29:32 147KB data mp python
1
该数据集将多元时间序列数据的多维拆解成多个一维文件,并以csv的格式对数据进行存储 该数据集结构为: -E:/桌面/代码/数据集/Multivariate2018_arff_csv -ArticularyWordRecognition -test_dim1.csv -test_dim2.csv ..... -train_dim1.csv -train_dim2.csv ..... -train_label.csv -test_label.csv 每个数据集下包含测试集数据、测试集标签、训练集数据、训练集标签
2023-02-16 17:00:04 191.69MB UEA 时间序列 数据集 多元时间序列数据集
1