ACM(国际大学生程序设计竞赛,International Collegiate Programming Contest)是一项全球性的计算机编程竞赛,旨在提升大学生的算法设计、逻辑推理和问题解决能力。这个压缩包文件“ACM题集_ACM训练题集_超ACM题集汇总_解题源码”显然是一个集合,包含了大量ACM竞赛相关的题目和已经解决的源代码,对于学习和准备ACM比赛的学员来说是宝贵的资源。 在ACM竞赛中,参赛队伍需要解决一系列算法问题,这些问题涵盖了数据结构、图论、动态规划、排序算法、搜索算法、数学逻辑等个领域。以下是一些ACM竞赛中常见的知识点: 1. **基础算法**:包括排序(快速排序、归并排序、堆排序等)、查找(二分查找、哈希查找等)以及递归和迭代等基本技巧。 2. **数据结构**:链表、数组、栈、队列、堆、树(二叉树、平衡树如AVL和红黑树)、图(邻接矩阵、邻接表等)以及跳跃表等。 3. **图论**:深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra、Floyd-Warshall)、最小生成树(Prim、Kruskal)等。 4. **动态规划**:状态转移方程、记忆化搜索、自底向上和自顶向下求解,如背包问题、最长公共子序列、最短编辑距离等。 5. **字符串处理**:KMP算法、后缀数组、后缀自动机、Manacher's Algorithm等。 6. **数学**:组合数学、数论(模运算、最大公约数、最小公倍数、欧几里得算法等)、排列组合、概率计算等。 7. **贪心算法**:解决问题时,每一步都选择当前最优解,如活动安排问题、霍夫曼编码等。 8. **回溯法**:用于寻找所有可能的解,如八皇后问题、N皇后问题等。 9. **分支限界法**:在搜索过程中限制搜索空间,如旅行商问题。 10. **位操作**:在某些问题中,位操作能提高效率,如快速幂运算、求最大公约数和最小公倍数等。 压缩包中的解题源码是参赛者或教练团队的经验结晶,通过阅读和分析这些代码,学习者可以理解不同问题的解决方案,学习高效编程技巧和算法实现,这对提高编程能力和竞赛水平至关重要。此外,对于每个问题,了解其所属的知识点、解题思路以及优化策略,都是深入理解ACM竞赛题目的关键。 ACM题集是一个综合性的学习资源,涵盖了计算机科学的基础与高级概念,是提升编程思维和技能的宝贵资料。通过深入学习和实践,不仅可以为参加ACM竞赛做好准备,也能为未来从事软件开发或其他相关领域的职业打下坚实基础。
2025-07-22 16:40:44 870.44MB
1
内容概要:本文详细介绍了基于ROS系统的机器人协同融合建图程序,旨在解决机器人协同建图过程中遇到的问题,提高建图效率和精度。该程序采用分布式系统架构,能同时处理个机器人的建图数据,具有良好的扩展性和可靠性。文中探讨了机器人协同与编队的概念和技术,重点讲解了地图融合技术,包括SLAM自主建图技术和坐标变换的地图对齐方法。此外,还介绍了用于导航避障的DWA和TEB算法。最后,强调了该程序仅适用于Ubuntu16和Ubuntu18系统。 适合人群:从事机器人研究、开发的科研人员和工程师,尤其是对机器人协同建图感兴趣的读者。 使用场景及目标:① 提供高效的机器人协同建图解决方案;② 实现高精度的地图融合;③ 在复杂环境中准确重建二维地图并进行导航避障。 其他说明:该程序不支持Ubuntu20及以上版本,因为这些版本的ROS仿真存在Bug。
2025-07-22 16:18:04 286KB ROS SLAM
1
技术融合图像加密项目,结合了传统密码学、混沌理论和基于变换域的图像加密技术。
2025-07-22 12:58:46 3.04MB python 图像加密
1
内容概要:本文档详细介绍了通过MATLAB实现的基于改进蜣螂算法(MSADBO)优化的卷积神经网络(CNN)-长短期记忆神经网络(LSTM)模型,用于特征时间序列的回归预测任务。文档强调了传统优化算法存在的局限性,并展示了MSADBO作为一种全局优化手段的优势。通过结合MSADBO优化CNN-LSTM超参数,模型能够在诸如电池寿命、金融市场、气象等领域提供精准可靠的特征回归预测,极大提升了训练效率与模型性能。文中还提供了详细的模型结构、代码实现及训练效果展示。 适合人群:具有一定机器学习和深度学习基础的技术研究人员、从事数据分析及相关应用开发的工程师。 使用场景及目标:适用于处理复杂、样化且带有时序特性的特征数据。目标是在保持较高精度的情况下,优化模型的训练过程,加快收敛速度,减少过拟合的风险。该模型特别适合金融市场的走势预测、天气变化趋势分析以及工业设备的状态监控与预测维护等领域。 其他说明:除了模型构建和代码解析外,文档还探讨了数据预处理的重要性,包括清理、标准化和平滑噪声,以确保高质量的数据供给给神经网络。此外,对于高维优化空间下可能出现的收敛缓慢问题进行了讨论,并提供了
2025-07-21 13:47:41 33KB 优化算法 LSTM MATLAB
1
在计算机视觉领域,目标跟踪(Multiple Object Tracking, MOT)是一项关键任务,它涉及识别视频序列中的个目标并持续追踪它们。"c++版本的基于Yolov5的deepsort的实现"是一个专为此目的设计的系统,它将深度学习模型与先进的跟踪算法相结合,以高效、准确地进行目标检测和跟踪。 Yolov5是一种流行的实时目标检测模型,全称为You Only Look Once的第五个版本。它的核心优点是速度快、性能高,能在种场景下检测出不同类型的物体。Yolov5通过一个单阶段检测器预测边界框和类别概率,这些预测在训练时基于大量的标注数据进行优化。在C++版本中,Yolov5可以利用TensorRT进行优化,这是一个由NVIDIA开发的高性能推理引擎,能加速深度学习模型的部署,尤其在嵌入式设备如NX上。 DeepSORT(Deep Metric Learning for Real-Time Tracking)是另一种关键组件,它是一个基于卡尔曼滤波器的目标跟踪算法。DeepSORT引入了深度学习特征来计算目标之间的相似度,以解决目标重识别问题,即使目标暂时被遮挡或离开视野,也能准确地重新找到它们。在Yolov5检测到目标后,DeepSORT会分配唯一的ID给每个目标,并在整个视频序列中保持这些ID不变,即使目标短暂消失或出现相似的干扰项。 在提供的压缩包中,包含了已经转换为TensorRT优化模型的Yolov5,这意味着模型已经被优化以适应硬件,提高运行速度。此外,还有配置好的转换过程文件,确保模型与代码的版本对应,可以直接运行,大大简化了部署流程。用户只需要按照指导设置,就可以在NX平台上顺利运行这个目标跟踪系统。 这个实现不仅对研究人员和开发者有极大的价值,也适用于实际应用,如智能监控、自动驾驶、无人机航拍等场景,它能在这些环境中实时有效地跟踪个移动的目标。通过结合Yolov5的强大检测能力和DeepSORT的精确跟踪技术,这个C++版本的实现为复杂环境下的目标识别和追踪提供了一个高效解决方案。
2025-07-21 10:45:48 89.94MB 多目标跟踪
1
麻雀搜索算法(SSA)深度复现与研究:策略改进与BiLSTM结合的变压器故障诊断新方法,麻雀搜索算法(SSA)复现:《策略改进麻雀算法与BiLSTM的变压器故障诊断研究_王雨虹》 策略为:Logistic混沌初始化种群+均匀分布动态自适应权重改进发现者策略+Laplace算子改进加入者策略——MISSA 复现内容包括:改进SSA算法实现、23个基准测试函数、改进策略因子画图分析、相关混沌图分析、与SSA对比等。 程序基本上每一步都有注释,非常易懂,代码质量极高,便于新手学习和理解。 ,麻雀搜索算法(SSA)复现; 改进策略; 基准测试函数; 画图分析; 代码质量高。,复现MISSA算法:策略改进麻雀搜索算法及其应用研究
2025-07-21 10:38:01 1.68MB edge
1
在无线定位领域,径效应是影响定位精度的主要因素之一。径效应发生在无线信号在传播过程中遇到障碍物并产生反射、折射等现象,导致信号到达接收器的时间和强度发生变化。TDOA(Time Difference of Arrival)定位算法作为一种基于时间差测量的定位方法,其在MATLAB中的实现对径效应的抵抗能力尤为重要。本文将探讨TDOA定位算法在MATLAB中的实现,并分析其对径效应的抵抗能力。 TDOA定位算法在MATLAB中的实现需要考虑径效应的影响。通过采用天线技术、信号处理技术和机器学习方法,可以有效地提高TDOA定位算法对径效应的抵抗能力。这些策略不仅可以提高定位精度,还可以增强算法在复杂环境下的鲁棒性。随着技术的不断发展,TDOA定位算法及其仿真方法将继续在无线定位领域发挥重要作用。 在实际应用中,TDOA定位算法的优化是一个复杂的过程,需要综合考虑种因素。通过在MATLAB中进行仿真实验和性能分析,我们可以进一步提高TDOA定位算法的精度和鲁棒性,以满足各种应用场景的需求。通过不断的实验和优化,我们可以充分发挥TDOA定位算法在不同信号传播模型下的适应性和准
2025-07-20 16:34:52 105KB TDOA定位算法 MATLAB 多径效应 无线定位
1
RichCopy是一个Microsoft内部交流的一个文件复制工具。RichCopy 可帮助你大量的复制文件,在较慢的网络中尤其适用。如果你只是复制少量的大文件,RichCopy将不能很好的提高传输的性能。但如果是复制大批量的小文件,RichCopy将使用线程来大大缩短传输时间。据用户反馈,在本地到本地,本地到远程,远程到远程的文件复制过程中,RichCopy可以比XCOPY最大提高10倍的性能。 资源管理器集成 通常我们都使用资源管理器来进行文件剪切,复制和粘贴的操作。如果安装了RichCopy 3.5,将允许使用RichCopy来代替Explorer的粘贴操作. 当你粘贴时,右键选择目标目录,菜单中将出现"Paste with RichCopy"操作选项,选择"Paste with RichCopy" 将打开RichCopy并使用剪贴板作为数据源进行操作。而且RichCopy的选项设置也可以选择菜单中的"Edit default RichCopy Options"进行修改。而且此次修改的选项仅仅应用于资源管理器中的粘贴操作。
2025-07-19 00:02:15 5.46MB 文件复制
1
针对复杂天空背景条件下低信噪比的红外弱小目标跟踪问题, 设计了一种目标跟踪系统。首先计算红外图像的光流场, 结合阈值分割和形态学滤波等数学方法检测出目标; 在该结果的基础上, 结合目标运动的连续性, 运用邻域轨迹预测的方法滤除检测过程中产生的噪声; 随后运用卡尔曼滤波轨迹预测的方法解决在跟踪过程中目标丢失的问题, 并解决当目标轨迹出现交联时如何辨识出各个目标轨迹的问题。该系统充分运用了目标的运动特性避免了噪声的干扰和目标轨迹混淆。使用长波红外热像仪采集的红外序列图像对系统进行了验证, 实验结果及相应理论分析表明该系统可有效实现复杂背景下的红外弱小目标跟踪。
2025-07-18 13:39:11 1.14MB 光学器件 红外技术
1
内容概要:本文详细介绍了如何利用拍卖算法进行无人机任务分配,并提供了具体的Matlab代码实现。首先,通过随机生成任务需求和无人机参数,构建了一个简化的任务分配模型。然后,通过竞价矩阵计算每架无人机对不同任务的报价,确保任务与无人机的能力相匹配。接着,通过奖励机制鼓励无人机高效完成任务,避免单一无人机过载。此外,文中还讨论了如何通过引入随机扰动优化任务分配效果,并展示了完整的代码实现和可视化结果。最后,作者提出了未来改进方向,如加入交通管制算法和强化学习。 适合人群:对无人机任务分配、拍卖算法以及Matlab编程感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要解决无人机协同作业的问题,特别是在物流配送、区域巡查等领域。目标是通过高效的任务分配算法,提高无人机系统的整体效率和响应速度。 其他说明:文中提供的代码可以在GitHub仓库获取,便于进一步研究和应用。
2025-07-18 13:06:17 165KB
1