垃圾邮件分类---安然数据集 使用逻辑回归和计数向量化将Enron数据集的电子邮件分为垃圾邮件或火腿邮件。 注意:彻底评论了Jupyter / IPython笔记本,因此这里不需要广泛的自述文件。
2023-01-25 17:31:14 30.69MB
1
基于python平台的SVM垃圾邮件识别
2023-01-07 15:31:18 4KB 基于SVM的垃圾邮件识别
1
介绍了第三章的算法实现的不足,分析了问题出现的原因,以及提出了改进算法的方法。第五章算法测试与评估。本章是本文的重点,对算法进行对比测试,得到了准确率、精确率、
2023-01-06 19:00:16 459KB
1
天真贝叶斯垃圾邮件检测器 使用Scikit学习机器学习库将电子邮件分类为垃圾邮件或非垃圾邮件的Python程序。 先决条件 该程序是用Python 3编写的,并使用了Numpy,Pandas和Scikit-learn库。 数据集 该程序利用以csv格式存储的两个数据集。 主要数据集“垃圾邮件或非垃圾邮件”。 该集合是文件'20030228easyham.tar.bz2'和'20030228_spam.tar.bz2'的组合。 这组包含2500个火腿电子邮件示例和500个垃圾电子邮件示例。 该集合包含两列:电子邮件和标签。 电子邮件列中的元素是带有数字值和url的文本字符串,分别用单词“ NUMBER”和“ URL”替换。 标签列中的元素可以具有两个可能的值:如果电子邮件是非垃圾邮件,则为0;如果电子邮件是垃圾邮件,则为1。 辅助数据集包含伪造数据。 此集合遵循主要集合的样式; 两列用于
2023-01-02 22:17:54 1.15MB
1
机器学习项目-音乐推荐-垃圾邮件源码文档,学习机器学习入门的可参考
2022-12-11 10:59:45 1MB 机器学习 项目 代码
1
物流人工智能_机器学习
2022-11-29 14:32:37 3.34MB 人工智能 机器学习 物流
RNN-垃圾邮件分类
2022-11-23 10:30:14 35KB JupyterNotebook
1
垃圾邮件分类项目 理想情况下,模型的估计性能可以告诉我们它在看不见的数据上的表现如何。 对未来数据进行预测通常是我们要解决的主要问题。 选择度量标准之前了解上下文非常重要,因为每种机器学习模型都会尝试使用不同的数据集来解决具有不同目标的问题。 Logistic回归没有改变,因为它的参数已经是最好的了。 即使SVC取得了很大的进步,但它的速度仍然很慢,但仍然不是最好的。 朴素贝叶斯(Naive Bayes)成功预测了4945个实际垃圾邮件中的4894个。 但是,Logistic回归和朴素贝叶斯彼此接近,不准确的足球我还是选择NaïveBayes模型作为数据集的最佳垃圾邮件分类器,因为朴素贝叶斯比Logistic回归要快。 与更复杂的方法相比,朴素贝叶斯学习者和分类器可以快速得到实现。 类条件特征分布的解耦意味着可以将每个分布独立地估计为一维分布。 反过来,这有助于减轻因维数的诅咒而产生的问题
2022-11-21 11:37:43 223KB JupyterNotebook
1
基于逻辑回归方法完成垃圾邮件过滤任务.zip
2022-11-20 14:26:46 232KB 机器学习
1
使用Python实现朴素贝叶斯算法实现垃圾邮件分类 一、实验任务内容 1、分解各类先验样本数据中的特征 2、计算各类数据中,各特征的条件概率 3、分解待分类数据中的特征 4、计算各特征的各条件概率的乘积 5、结果中的最大值就是该样本所属的类别 二、实验步骤及结果 1、得到数据集和标签集,返回列表参数,返回单词转换为向量之后的列表。 2、通过训练得到贝叶斯分类模型 3、用朴素贝叶斯文本分类器对两个测试样本进行分类,利用正则函数进行解析 4、导入垃圾邮件和非垃圾邮件各25个并解析;构建训练集和测试集,利用贝叶斯分类模型来预测测试集,输出贝叶斯预测的准确率 5、输出测试10次的平均值 6、输出去重的单词列表和贝叶斯分类模型测试的准确率,测试10次的准确率的平均值。 三、实验心得 朴素贝叶斯确实是很好的预测分类的算法,但是这个算法还是有点过分的依赖训练集了,一些基本的概率计算还是根据训练集的结果得来的(比如40个训练集,10个测试集,它输出的准确率是0.5),预测的结果很大程度上取决于训练集的好坏,一旦训练集数据趋势有误会对结果造成严重的影响。
1