如题,本资源包含了完整的训练代码和训练数据。更多详情可参考博客一:https://qianlingjun.blog.csdn.net/article/details/125051953 博客二:https://qianlingjun.blog.csdn.net/article/details/125064999 数据集部分是LIDC-IDRI的CT结节的数据集,其中供参考的是分叶征的完整数据集(如果需要良恶性、毛刺征等等,可以私信我补充)。代码部分还包括了数据生成的代码,这部分可以帮助你后续产生自己的训练数据集。
2024-03-16 16:54:44 298.1MB pytorch pytorch 数据集
1
这些文档主要介绍了深度学习模型中的一些关键组件,包括自注意力机制、前馈神经网络和Transformer模块等。它们适用于需要深入理解这些概念以构建自己的神经网络模型的读者,包括机器学习研究人员、深度学习工程师和学生等。 主要实现了基于Vision Transformer(ViT)的图像分类模型,并进行了相应的改进。首先,通过使用Rearrage层对输入的图像进行重新排列,将其转换为符合Transformer模型输入要求的格式。然后,通过定义PreNorm层、FeedForward层和Attention层等模块,构建了基于ViT的CNN模型(ViTCNN)。其中,PreNorm层用于对输入进行归一化处理,FeedForward层用于进行前向传播计算,Attention层则用于实现注意力机制。在计算过程中,通过使用sin-cos位置编码(posembsincos)方法,将图像的位置信息转化为可学习的参数,提高了模型的泛化能力。最后,通过GRU层对特征进行进一步的处理和融合,得到最终的分类结果。 该模型具有较好的精度和效率,可广泛应用于图像分类任务。但是,该模型仍存在一些可以改进的地方,例如
2024-03-11 20:23:29 3.37MB 深度学习 人工智能 图像分类
1
利用ViT模型实现图像分类,本项目具有强大的泛化能力,可以实现任何图像分类任务,只需要修改数据集和类别数目参数。这里采用的是开源的“猫狗大战”数据集,实现猫狗分类。 本项目适用于Transformer初学者,通过该实践项目可以对于ViT模型的原理和结构有清晰地认识,并且可以学会在具体项目中如何运用ViT模型。本项目代码逻辑结构清晰,通俗易懂,适用于任何基础的学习者,是入门深度学习和了解Transformer注意力机制在计算机视觉中运用的绝佳项目。
1
深度学习图像分类数据集 脑PET图像分析和疾病预测挑战赛%2F脑PET图像分析和疾病预测初赛数据 可以用来训练自己的模型
2024-03-07 19:12:28 18.55MB 深度学习 数据集 图像分类
1
本文介绍了使用pytorch2.0进行图像分类的实战案例,包括数据集的准备,卷积神经网络的搭建,训练和测试的过程,以及模型的保存和加载。本案例使用了CIFAR-10数据集,包含10个类别的彩色图像,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。本案例使用了一个简单的卷积神经网络,包含两个卷积层和两个全连接层,使用ReLU激活函数和交叉熵损失函数,使用随机梯度下降优化器。本案例可以在GPU和CPU上运行,根据设备的不同自动切换。本案例适合入门pytorch深度学习和练手,也可以用到项目当中。代码精炼,容易修改进行二次完善和开发。
2024-01-16 14:08:43 325.06MB pytorch 数据集 计算机视觉
1
本文讨论了使用傅里叶描述符进行血细胞分析和分类。 以二维数字序列傅立叶描述符的形式描述轮廓边界的模型。 图形的形状和方向对傅立叶描述符参数的影响。 探索如何确保傅立叶描述子关于几何变换的不变性。 计算机图形工具的Fourier描述符的图形表示模型。 一种基于神经网络的傅立叶描述符形成信息特征空间的方法,对边界图像段的轮廓进行分类。
1
可直接运行。基于pytorch vision transformer的乳腺癌图像分类 完整代码+数据 可直接运行 毕业设计
2024-01-12 10:45:54 571KB pytorch pytorch transformer 毕业设计
1
ResNet_classification。ResNet网络在pytorch框架下实现图像分类,拿走即用,包含批量化测试验证。该文件包含ResNet18、ResNet50、ResNet101等网络实现图像分类的代码及对训练好的模型进行单一测试和批量测试的代码。ResNet网络是参考了VGG19网络,在其基础上进行了修改,并通过短路机制加入了残差单元。
2023-12-18 17:42:31 7KB pytorch ResNet 图像分类 python
1
深度学习+Alex图像分类数据集+猫狗分类: 一共有两类:猫、狗: 数量的话分别在12500张 关于模型训练详细教程可以看我的博客:https://editor.csdn.net/md?not_checkout=1&articleId=129293973
2023-10-17 17:02:07 974.49MB 深度学习 图像分类 Alex 计算机视觉
1
基于transformer网络的图像分类识别,包括训练、测试,亲测有效!!!
2023-10-13 14:57:23 307.1MB 网络 网络 深度学习 人工智能
1