针对任意方向的直线运动模糊图像,说明只能直接在运动方向上得到运动参数,从而设置二维点扩展函数(point spread function,PSF)。在此基础上,应用倒频谱分析法给出了PSF参数估计的方法。实验表明,该方法在模糊为任意方向且模糊范围介于5~55像素时对参数的估计误差较小,能保证较好的恢复质量;当模糊范围超出该范围时,估计误差急剧加大,估计值不可信,无法保证恢复质量。
2023-02-21 13:20:26 3.06MB 工程技术 论文
1
概率密度函数非参数估计matlab代码这是JAMS的Python软件包。 JAMS是一个通用的Python软件包,提供了不同类别的其他功能,例如读取不同的文件格式,朱利安日期例程或气象功能。 它有几个提供常数的子包,可与Eddy协方差数据和诸如EddySoft之类的软件一起使用,提供特殊功能或与scipy.optimize.fmin或scipy.optimize.curvefit一起使用的目标函数,等等。 由Matthias Cuntz创建于2009年6月在Helmholtz环境研究中心-UFZ,Permoserstr的计算水系统系工作。 15,04318莱比锡,德国 它是根据MIT许可证分发的(请参阅LICENSE文件和下面的文件)。 版权所有(c)2012-2019 Matthias Cuntz,Juliane Mai,Stephan Thober,Arndt Piayda 联系Matthias Cuntz-mc(at)macu(dot)de 安装 该库由git存储库维护,位于: https://github.com/mcuntz/jams_python/ 要使用它,请签出git仓
2023-02-20 09:40:39 4.68MB 系统开源
1
高斯混合模型是有效的描述数据集合分布的手段,高斯混合模型中各个单高斯模型的均值、方差和权重的估计,实际上是样本空间下的参数估计问题。参数估计的方法有很多,相比较而言,EM算法是MLE(Maximum Likelihood Estimation)原理下的针对不完备数据集合的回归分析算法,它是由E步和M步迭代循环,直至误差小于给定门限为止。因此本文采用了一种基于EM方法的高斯混合模型参数估计的方法对运动人体姿态进行建模,可以较准确的对模型进行参数估计。对典型姿态建模之后还可以解决对姿态的识别问题。
2023-02-15 21:18:31 417KB EM GMM
1
matlab 参数估计与假设检验+源代码
2023-01-26 21:57:57 8KB matlab参数估计与假设检验
1
ISAR高分辨成像和参数估计算法研究ISAR高分辨成像和参数估计算法研究ISAR高分辨成像和参数估计算法研究
2023-01-19 16:35:54 5.79MB ISAR 高分辨成像 参数估计算法
1
Classification,Parameter Estimation and State Estimation An Engineering Approach Using MATLAB
2023-01-13 10:53:28 6.29MB 分类 参数估计 状态估计 MATLAB
1
改文件包中包含EM算法,已经使用GMM算法进行参数估计,并同时示例进行分类训练和预测
2022-12-27 21:25:53 14KB EM算法 GMM Gmm参数估计 代码示例
1
高压线路的电阻、电抗和对地电纳在数值上差别很大,常规参数估计方法将其作为独立变量分别估计,导致电 阻、电抗和对地电纳的估计值误差不一致,其中小阻抗的误差常常很大。针对上述问题,提出了一种基于单位长度参数和长度的线路参数估计新模型。其中,状态变量为线路两端的多时段电压幅值与相角,参数变量为线路的单位长度参数和长度。由于引入了长度作为电阻、电抗和对地电纳的公共变量,突出了线路参数整体对潮流状态的影响,因而新模型可以保证线路参数估计值误差的一致性,避免了常规模型中小阻抗大误差的问题。另外,还提出了参数估计的混沌
2022-12-26 22:24:43 253KB 自然科学 论文
1
提出一种对图像中每个点逐一取阈值进行分类的一种新的阈值分割算法。该算法利用图像中像素邻域的灰度值均值统计信息作为该点阈值设置的标准,并引入该点邻域内像素灰度值方差作为附加判断条件,使提取出来的目标点是图像的边缘点。事实上该阈值分割算法起到了边缘提取的效果。实验证明,本文算法起到了良好的边缘检测效果,并且验证了本算法对于以邻域统计信息作为阈值估计标准的合理性。
1
1.完成基于正态窗函数的 Parzen 窗法概率密度函数估计的 Matlab 程序编写, 并写出相应程序语句的文字说明; 2.选取 h1=0.25, 1.0, 4.0,分别在样本数 N=1, 16, 256, 1024, 4096 时画出原始概 率密度曲线和不同参数下估计的概率密度曲线。分析所得到概率密度曲线的变化 情况,说明 N、h1对概率密度函数估计的影响。 3.分析程序运行和实验中遇到的困难。
1