协同过滤是成功的个性化推荐技术之一. 但传统协同过滤算法由于不能及时反映用户的兴趣变化,影响了推荐质量. 针对这个问题,本文借鉴心理学上艾宾浩斯遗忘曲线来跟踪和学习用户的兴趣,展开了协同过滤推荐算法的研究. 通过数学分析工具发现了与遗忘曲线拟合度较高的幂函数曲线,并把用户的兴趣分为短期兴趣和长期兴趣,提出了基于时间窗口的权重函数,以此解决跟踪和学习用户兴趣的难题. 结合项目的评分相似性和属性相似性来定义项目相似度数据权重函数. 将基于时间窗的数据权重与基于项目相似度的数据权重相结合来反应用户对项目的兴趣度
2021-12-21 09:48:34 453KB 自然科学 论文
1
针对传统协同过滤(CF)推荐算法存在评分矩阵稀疏、扩展性弱和推荐准确率低的缺陷,提出一种改进模糊划分聚类的协同过滤推荐算法(GIFP-CCF )。在传统基于修正余弦相似度计算方法上,引入时间差因子、热门物品权重因子以及冷门物品权重因子以改善相似度计算结果;同时引入改进模糊划分的GIFP-FCM算法,将属性特征相似的项目聚成一类,构造索引矩阵,同索引间根据项目间的相似度寻找项目最近邻居构成推荐,从而提高协同过滤算法(CF)的精度。通过与Kmeans-CF、FCM-CF和GIFP-CCF算法进行仿真对比实验,证明了GIFP-CCF 算法在推荐结果和推荐精度上具有一定的优越性。
2021-12-16 11:51:56 932KB 论文研究
1
操作说明: 1、解压下载的CollaborativeFilteringBasedUserCloud压缩文件 2、操作系统中需装java jdk1.7或者以上版本 3、点击start.bat,在运行过程中,会输出评分时间,然后输出用户id进行推荐 4、数据集movielens
1
ItemCF 基于物品的协同过滤推荐算法Demo An recommend algorithm based on ItemCF, use Python. the ininial data format like this ,for some reason,the original data file is not supported. 一个基于物品的协同过滤推荐算法,原始数据的格式如下: SearchData-userClickKsc date:20150929 00:00:32 word:泪满天 userid:123456 songName:泪满天(立体声伴奏) songID:54321 rank:3 currentPage:2 type:songName
2021-11-05 09:11:01 5KB Python
1
本文主要介绍基于项目的协同过滤推荐算法的推荐原理、推荐过程、代码实现。 一、基于项目的协同过滤推荐算法推荐原理 基于项目的协同过滤推荐算法也是推荐算法中最基础、最简单、很重要的算法,主要是根据用户对项目的某一种操作行为,构成项目-用户操作行为矩阵,根据操作行为矩阵计算项目之间的相似度,最终为目标用户推荐目标用户有操作行为的预测评分高的项目,作为目标用户感兴趣的项目。 二、基于项目的协同过滤推荐算法推荐过程 基于项目的协同过滤推荐算法推荐过程可分为三个步骤:构建项目-用户操作行为矩阵、计算项目之间似度、获取推荐结果。 1、构建项目-用户操作行为矩阵 我们以用户对项目的评分数据为例,M个项目和N个
2021-11-03 11:04:07 48KB ie le lens
1
数据挖掘的一个方向:协同过滤 作者: 邓爱林, 朱扬勇, 施伯乐 1(复旦大学 计算机与信息技术系,上海 200433) 2(上海电信技术研究院,上海 200122)
2021-10-14 19:51:23 447KB 基于预测 协同过滤 算法 数据挖掘
1
本文主要介绍基于用户/项目的协同过滤推荐算法在音乐推荐系统、图书推荐系统、电影推荐系统、新闻推荐系统、电子商务网站、购物系统中的应用和实现。 一、基于用户/项目的协同过滤推荐算法在推荐系统中的应用 目前商用的推荐机制都为混合式推荐,将用户标签、用户属性、项目属性、用户操作行为、聚类算法、基于用户、基于项目、基于内容等混合推荐。 协同过滤推荐算法在网站中应用非常广泛,比如:电子商务网站、购物系统、个性化音乐网站、电影网站、图书网站、新闻网站等等。 二、基于用户/项目的协同过滤推荐算法在推荐系统中的应用 作者实现了协同过滤推荐算法在音乐网站中的应用,登录用户可以对音乐进行评分、收藏、添加到自定义歌
2021-10-12 10:53:20 847KB 协同过滤 推荐算法 推荐系统
1
基于标签权重的个性化协同过滤推荐算法之软件工程分析.docx
2021-10-08 23:11:40 50KB C语言
协同过滤是推荐系统中最有效的方法之一,推荐算法评分预测的精确性受到最近邻居的提取以及项目或用户相似度计算的两个关键点的影响。根据用户行为相似性原理,采用最大交集法提取与当前项目共同评分最多的邻居作为最佳邻居候选集,同时提出了加权余弦相似性方法对相似度进行计算,并采用粒子群优化算法(PSO)对权重进行优化求解。实验结果表明,采用上述方法相对于传统方法来说,能较好地改善评分预测的精确度,有效地提高推荐系统的推荐质量。
2021-09-22 13:48:59 620KB 论文研究
1
基于蚁群模糊聚类的协同过滤推荐算法.pdf
2021-08-20 14:13:32 274KB 聚类 算法 数据结构 参考文献