利用未标记示例的主流学习技术主要有三大类[Zhou06],即半监督学习(semi-supervised learning)、直推学习(transductive learning)和主动学习(active learning)
2022-01-27 19:18:02 400KB 半监督学习 协同训练
1
随着深度学习的发展,研究人员开始探索将深度学习应用于行人重识别任务并提出了大量方法,随之也迎来了新的挑战。为系统地了解这一领域的研究现状和发展趋势,首先对行人重识别任务以及存在的问题进行简单介绍;其次,根据训练方式的不同,分别探讨监督学习、半监督学习/弱监督学习以及无监督学习上行人重识别任务的研究进展,并根据现有研究热度介绍生成对抗网络和注意力机制在行人重识别上的应用;之后,列举了该领域中常用的经典数据集,并对比了深度模型在这些经典数据集(Market-1501、CUHK03等)上的表现;最后,对行人重识别领域的未来方向进行了展望。
2022-01-07 15:26:39 1.8MB 行人重识别 监督学习 半监督学习
1
混合搭配 这是MixMatch的非官方PyTorch实现。 Tensorflow的官方实现在。 现在只有在CIFAR-10上的实验可用。 该存储库认真执行了官方实施的重要细节,以重现结果。 要求 Python 3.6+ PyTorch 1.0 torchvision 0.2.2(旧版本与此代码不兼容) 张量板 进步 matplotlib 麻木 用法 火车 通过CIFAR-10数据集的250个标记数据训练模型: python train.py --gpu --n-labeled 250 --out cifar10@250 通过CIFAR-10数据集的4000个标记数据训练模型: python train.py --gpu --n-labeled 4000 --out cifar10@4000 监控培训进度 tensorboard.sh --
1
针对机器学习中训练样本和测试样本概率分布不一致的问题,提出了一种基于dropout正则化的半监督域自适应方法来实现将神经网络的特征表示从标签丰富的源域转移到无标签的目标域。此方法从半监督学习的角度出发,在源域数据中添加少量带标签的目标域数据,使得神经网络在学习到源域数据特征分布的同时也能学习到目标域数据的特征分布。由于有了先验知识的指导,即使没有丰富的标签信息,神经网络依然可以很好地拟合目标域数据。实验结果表明,此算法在几种典型的数字数据集SVHN、MNIST和USPS的域自适应任务上的性能优于现有的其他算法,并且在涵盖广泛自然类别的真实数据集CIFAR-10和STL-10的域自适应任务上有较好的鲁棒性。
2021-12-30 14:37:54 1.25MB 域自适应方法 正则化 半监督学习
1
半监督学习很好的入门文献,简单易懂,该文是半监督学习领域的代表之作。
2021-12-20 17:48:51 1.15MB 半监督学习
1
semi-supervised-learning半监督学习详细介绍PPT——共61页
2021-12-13 14:00:17 4.67MB ssl
半监督序列学习 此回购记录了重现论文给出的结果的实验​​。 简而言之,我们在未标记的文本数据上对序列自动编码器或语言模型进行预训练,然后使用标记的文本数据对使用预训练权重初始化的基于RNN的序列分类器进行微调,与随机初始化的权重相比,分类精度更高。 资料准备 IMDB数据集 我们为此实验使用。 下载并解压缩,导航至目录aclImdb/train ,该目录aclImdb/train中包含带aclImdb/train/pos的正( aclImdb/train/pos )和带标签的负性( aclImdb/train/neg )以及未标签的评论( aclImdb/train/unsup )。 然后cd进入每个子目录并运行 for f in *.txt; do (cat "${f}"; echo) >> pos.txt; done for f in *.txt; do (cat "${f}"; ec
1
基于有监督的虚假评论检测方法受限于标注语料的规模,为了更好地利用未标注评论数据来提高分类器的正确率和泛化能力,本文提出一种基于半监督主动学习的虚假评论检测方法。首先,定义并提取评论内容特征以及评论者行为特征,结合这两类特征来对虚假评论进行检测。然后,采用基于熵的主动学习算法选择对学习最有帮助的评论样本,获得其类别标注,将其合并到基于Tri-training的半监督学习算法的训练集中,利用大量未标注评论数据进行学习,提升分类器性能。最后,在领域评论数据集上进行实验,结果表明,将半监督学习与主动学习相结合,能够更有效的利用未标注评论数据,从而有效地提高虚假评论检测的效果。
1
达斯尔 Dassl是一个工具箱,旨在研究领域适应和半监督学习(因此而命名为Dassl )。它具有模块化设计和统一的界面,可以快速进行原型设计和新DA / SSL方法的试验。使用Dassl,只需几行代码即可实现一种新方法。 您可以将Dassl用作库进行以下研究: 领域适应 域泛化 半监督学习 什么是新的 [2021年3月]我们刚刚在上发布了关于域泛化的调查,该调查总结了该主题的十年发展情况,涵盖了历史,相关问题,数据集,方法论,潜力方向等等。 [2021年1月]我们最近的工作 (混合不同域样本的实例级特征统计信息以改善域泛化)已被ICLR'21接受。该代码已在中发布,其中跨域图像分类部分基于Dassl.pytorch。 [2020年5月] v0.1.3 :添加了Digit-Single数据集,用于对单源DG方法进行基准测试。相应的CNN模型为 ,数据集配置文件为 。参见了解如何评估您的方
2021-12-08 15:22:30 146KB Python
1
Keras梯形网络的半监督学习 这是Keras中Ladder Network的实现。 阶梯网络是半监督学习的模型。 请参阅A Rasmus,H Valpola,M Honkala,M Berglund和T Raiko题为“进行”的论文。 此实现已在我们的论文《的正式代码中。 该代码可以发现和博客文章,可以发现 仅使用100个带标签的示例,该模型即可在MNIST上实现98%的测试准确性。 该代码仅适用于Tensorflow后端。 要求 Python 2.7 + / 3.6 + Tensorflow(1.4.0) 麻木 keras(2.1.4) 请注意,其他版本的tensorflow / keras也应该起作用。 如何使用 加载数据集 from keras . datasets import mnist import keras import random # get the da
2021-11-25 15:46:13 5KB Python
1