基于Python以二手房信息为对象,爬取二手房价格、小区名称、地区、房屋数量、建造时间等信息,同时将数据存储于数据库,并利用Pandas清洗数据。最后将数据利用Flask和Echarts在前端以图表的形式输出。预测使用多元线性回归进行二手房销量的预测,包含项目的解释文档,使用前请认真查看说明文档
2022-03-15 00:52:27 739KB 数据爬取 python 二手房数据 预测
1
计算机编译原理---语法分析预测分析法.pdf
2022-01-25 14:04:18 899KB 资料
黑色星期五数据集分析预测
2021-12-30 11:50:46 5.37MB
1
Python: Advanced Predictive Analytics: Gain practical insights by exploiting data in your business to build advanced predictive modeling applications Python: Advanced Predictive Analytics: Gain practical insights by exploiting data in your business to build advanced predictive modeling applications By 作者: Ashish Kumar – Joseph Babcock ISBN-10 书号: 1788992369 ISBN-13 书号: 9781788992367 Release 出版日期: 2017-12-27 pages 页数: (660 ) $99.99 Python: Advanced Predictive Analytics: Gain practical insights by exploiting data in your business to build advanced predictive modeling applications Gain practical insights by exploiting data in your business to build advanced predictive modeling applications Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python. You’ll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling. Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books: Learning Predictive Analytics with Python Mastering Predictive Analytics with Python What You Will Learn Understand the statistical and mathematical concepts behind predictive analytics algorithms and implement them using Python libraries Get to know various methods for importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and NumPy Master the use of Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover advanced methods to analyze structured and unstructured data Visualize the performance of models and the insights they produce Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis
2021-12-25 22:49:17 20.59MB python 预测
1
利用大数据与人工智能分析预测金融市场 前言 一直想做一个的项目,即结合现在自己现有的技术、未来技术发展的趋势、以及自己想要方向,考虑了好久,决定自己开发一个项目:利用大数据与人工智能分析金融市场的趋势,项目的名字就叫唤灵科技吧。 要实现的功能: 用大数据分析、股票期货的行情、趋势 用人工智能让程序自动学习股票、期货的投资交易实现预测行情走势、给出交易信号 实现思路: 第一步: 通过Python爬虫 从金10网等行情分析网站爬取数据 从各大交易品种获取实时行情数据 第二步 把爬取的数据存储到大数据集群 第三步 大数据分析爬取的数据,实现以下功能: 给影响行情的信息、关键字打标签, 所有的标签自动生成, 给所有的标签添加权重 所有的标签自动生成权重 通过标签及权重对指定的行情阶段进行人物画像 对不同的品种建模,进行周期性分析、回归分析 预测下一步的趋势 生成BI分析报告 对大数据进行实时全文检
2021-12-14 16:51:46 12.05MB finance streaming ai spark
1
aladdin股市量化分析预测涨跌论坛软件2021.12.7周二版源代码-- aladdin股市量化分析预测涨跌论坛软件2021.12.7周二版源代码--
2021-12-07 19:09:55 222B 量化分析预测涨跌论坛软件
非常经典的时间序列分析:预测与控制的第四版
2021-12-07 15:30:19 46.11MB 时间序列 序列分析
1
硕士论文 硕士论文-通过混合分析预测识别Android恶意软件 抽象的随着运行移动操作系统Android的移动设备的数量不断增加,其广泛使用和各种应用可能性,这些设备已成为恶意应用程序的重要目标。 通过先进的静态和动态分析,研究人员可以深入了解恶意软件的机制,而机器学习通常被用来检测未知的恶意应用程序。 Android操作系统和相关恶意软件不断发展。 因此,使用过时的恶意软件训练机器学习模型可能会对较新的恶意软件的预测标识的性能产生负面影响。 尽管一些科学出版物使用了过时的恶意软件集合。 本文着重研究一个中心问题:通过比较两种混合方法,对最近的Android恶意软件的预测识别有多精确? 在本文中,从合适的存储库中收集了近期的恶意和良性Android应用程序。 实施了两种混合分析,以从Android应用程序中提取静态和动态信息。 两种方法都试图增加在物理设备上执行的动态分析的代码覆盖率。 利
2021-12-06 20:23:26 35.14MB
1
(2)面板单位根检验 在工作文件窗El中打开CP变量的15个数据组,点击View键,选Unit Root Test功能(如图11.3.8),打开Group Unit Root Test对话框如图11.3.9,共有6个选项区。 图11.3.8
1
文章讨论了LL(1)语法分析器的工作原理和过程, 以具体实例说明语法定义、造表和总控程序的实现过程。 实现语言是C++
1