simulink仿真分数阶工具箱,参考文献为薛定宇《分数阶微积分学与分数阶控制》。分数阶微积分是一个古老而又“新鲜”的概念,早在整数阶微积分创立的初期,就有一些学者开始考虑它的含义,然而,由于缺乏应用背景和计算困难等原因,分数阶微积分理论及应用的研究一直没有得到太多实质性进展。近年来,随着计算机技术的跨越式发展和分数阶微积分理论的不断深入研究,人们发现分数阶微积分特别适合描述具有记忆特性、与历史相关的物理变化过程,如黏弹性特性,而实际系统中具有这样性质或动态特性的对象随处可见。目前,研究人员在软物质、控制工程、反应扩散、流变学等诸多领域开始采用分数阶模型进行描述,并得到了一些特殊性质和更精细化的结果,这极大地鼓舞和促进了人们对分数阶动力学系统理论和应用的研究。众所周知,整数阶微分系统表征的是对象属性(或状态)的瞬时变化特性,而分数阶微分系统表征的是对象属性(或状态)的变化。因此,从一定意义上说,用分数阶微积分学理论进行建模更能真实地刻画与反映对象的某些特殊性质。已取得的研究成果表明,分数阶动力系统具有其独特优势。
1