1、频率估计:计算公式:m_axis_data_tuser* fs/COUNT=82*250M/1024= 20.0195MHz 2、幅度估计:如果输入的是复信号,最后输出的值是信号幅度的有效值。如果输入的是实信号,最后输出的值是信号幅度的有效值的一半。
2024-07-31 15:38:22 63.22MB
1
结合GPS工作原理,分析了GPS干扰的类型以及相应的抗干扰技术,在此基础上提出了GPS抗干扰设计方案,并重点给出了GPS自适应调零天线射频电路的设计,实际测试和工程使用结果表明这种设计方法是切实可行的,可以在煤炭等工程中得到推广应用。
2024-07-17 15:34:12 293KB GPS 调零天线
1
知识辅助(KA)时空自适应处理(STAP)是一种吸引人的方案,用于提高在样本匮乏的异构环境中慢速移动目标的检测性能。 在本文中,我们解决了在KA约束下干扰协方差矩阵的最大似然估计问题。 为了降低内点法的复杂性,我们导出了干扰协方差矩阵的近似形式最大似然估计。 此外,对于在KA约束中仍然无法解决的开放问题的超参数选择,我们提出了一种基于似然函数和交叉验证的高效且全自动的方法。 我们发现,提出的估计器由白化样本协方差矩阵(SCM)的预白化步骤和特征值截断步骤组成,这与假定的杂波协方差(FMLACC)方法与现有的快速最大似然性有些相似。 但是,他们采用了不同的方法来截断增白的SCM的特征值。 数值模拟还表明,通过适当地选择超参数,所提出的估计可以显着优于在某些情况下FMLACC方法。
2024-07-17 09:17:31 472KB 研究论文
1
项目中包含的内容: 1.使用vs2022能直接运行后看到界面的程序 2.能够复用的button重绘的两个文件,mybutton.h,mybutton.cpp,因为对菜单栏进行重绘,需要去掉mfc自带的最大化,最小化,推出按钮。所以要对 最大化,最小化按钮进行重绘 3.能够复用的重绘button的两个文件,MenuEx.h,MenuEx.cpp.因为去掉了mfc自带的菜单,所有要对菜单进行重绘和美化,主要是文件,选项,帮助这几个 4.对list进行重绘的对应文件总共有8个文件 5.本人运行程序后,截取的效果图 这个项目文件是对mfc的菜单栏,按钮,列表,标题栏进行美化的一个完整工程,主要内容有, 1.去掉mfc原生的菜单栏, 2然后选取头部区域作为菜单栏上色, 3.重绘菜单,文件,选项,帮助,这几个 4.点击文件,选项,帮助的时候,会弹出我们重绘的菜单 5.重绘最大化,最小化,退出按钮、 6.重新绘制启动,停止按钮,进行美化和贴图 7.重新绘制list,列表框,进行美化 8.在最大化,最小化,还原的时候,对列表空间,按钮空间,菜单栏,进行自适应的开发 9.对mfc界面的主体部分进行上色
2024-07-17 08:46:45 175.27MB
1
"自适应前馈射频功率放大器设计" 自适应前馈射频功率放大器设计是指采用自适应前馈技术和包络检测技术来设计射频功率放大器。这种技术考虑到实际中可能遇到的问题,从而对复杂问题进行简化,不仅从理论上,而且从实践上证实了他的可实现性。 在现代无线通信中,人们广泛采用工作于甲乙类状态的大功率微波晶体管来提高传输功率和利用效率。然而,无源器件及有源器件的引入、多载波配置技术的采用等,都将导致输出信号的互调失真。因此,在设计射频功率放大器时,必须对其进行线性化处理,以便使输出信号获得较好的线性度。 常用的线性化技术包括功率回退、预失真、前馈等。其中,功率回退技术能有效地改善窄带信号的线性度,而预失真技术和前馈技术,特别是前馈技术,由于其具有高校准精度、高稳定度以及不受带宽限制等优点,成了改善宽带信号线性度时所采用的主要技术。 本文首先简述了普通的前馈线性化技术,然后在此基础上进行改进,添加了自适应算法,并通过信号包络检测技术提取出带外信号进行调节,从而达到改善输出信号线性度的目的。 前馈基本原理最基本的前馈放大器原理如图1所示。他由2个环路组成:环路1由功分器、主放大器、耦合器1、衰减器1、相移器1、延时线1、合成器1组成。输入的RF信号,即2个纯净的载波信号,经功分器后被分成两支路信号:上分支路为主功率放大器支路,纯净的RF载波信号经过该支路后产生放大后的载波信号和互调失真信号;下分支路为附支路,纯净的RF载波信号经过该支路后被延时,主功率放大器支路输出的非线性失真信号经衰减器1和相移器1后,与附支路输出的信号在合成器1中合成,调节衰减器1和相移器1使两支路信号获得相等的振幅、180''相位差以及相等的延迟。 环路2,也叫失真信号消除环路,由延时线2、辅助放大器、衰减器2、相移器2、耦合器2组成。同样也有两条分支支路:上分支路将主放大器输出的非线性失真信号延时后送人耦合器2;下分支路将环路1提取出的互调失真信号进行放大、衰减、相移后也送人耦合器2,调节衰减器2和相移器2,直到耦合器2输出的信号中互调失真信号最小,也就是IMD最小,则此时输出的信号就是放大的射频信号。 自适应前馈射频功率放大器的设计中,引入了自适应技术,以便能及时获得载波信号在振幅、相位以及延时上的匹配。自适应前馈系统的结构如图2所示。他由3个环路构成:环路1主要用于提取互调失真信号,环路2主要用于消除失真信号,而环路3则主要用于检测互调失真信号功率。 在具体的实现结构上,在合成器1后面又添加了功分器2,其目的是对信号υd(t,g, ψ)进行功率检测,很明显,如果调节α使得合成器1两输入信号的幅度、相位以及延迟都达到匹配,那么这里检测到的功率将只有互调失真信号υe(t)的平均功率尸+而他是很小的,换句话说,如果检测到功分器2输出的功率足够的小,那么此时对α的调节就达到了最优,即RF载波信号已被最大程度的消除了,而保留下来的仅有互调失真信号υe(t)。 进入环路2的互调失真信号经过辅助放大器放大,矢量调制器2(其调制系数为复系数β)调节后,与经过延时线2的主放大器输出信号在合成器2中合成。该环路对互调失真信号的振幅及相位调节同样也采用自适应技术,其数学原理如上所述,但在实现的结构上,却与环路1不同,环路1是通过直接检测合成器1的输出信号来判定RF载波信号是否被抵消到最小值,而环路2在判定互调失真信号是否被抵消到最小值时,却需要引入第三个环路。 我们知道,对于相同功率的输出信号,线性信号的包络要大于非线性信号的包络,而二者的包络差值信号就是互调失真信号,最大限度减小其包络差值信号,就能最大程度地改善输出信号的线性度,从而减小IMD。环路3的工作原理正在于此。他处理的两路信号一路是线性信号,即经过延时线3及功分器4的RF载波信号,另一路是非线性信号,即经前馈系统环路1和环路2后由合成器2输出的信号。
2024-07-16 21:01:24 189KB 射频功率
1
为了解决传统分簇路由协议中存在的能耗开销不均衡和簇头选举不合理的问题,提出了一种基于模糊K均值和自适应混合蛙跳算法的WSN负载均衡分簇路由协议。首先,Sink节点收集各子区域的节点位置信息,并行运行模糊K均值算法将网络区域分为若干大小规模不同的簇,并将数据中心拟合到初始簇头节点。然后,以最大化节点剩余能量和最小化节点与簇头以及簇头与Sink节点的距离为目标定义了适应度函数,采用改进的自适应混合蛙跳算法对簇头进行寻优,并将最优解作为最终的簇头。最后,设计了最小跳数路由算法获得各簇头到Sink节点的最小跳数路由。采用NS2仿真工具对该方法进行仿真,实验表明:该方法具有较长的网络生命周期,较其它方法延长生命周期30%以上,具有较大的优越性。
2024-07-14 15:17:35 606KB 行业研究
1
最新独家修复版公司起名+宝宝起名网站源码,thinkPHP内核开发。是正在运营的起名网站,有PC端和手机端,双端自适应。内附安装教程,一看就懂。 公司起名、店铺起名、商标起名和宝宝起名集成到一个网站的周易八字起名网站,功能非常强大。 支持微信和支付宝付款方式。 完美运营版。有需要的拿走吧。 是市面上比较稀缺的公司起名和宝宝起名同时具备的起名系统源码。
2024-07-07 07:21:02 17.61MB 宝宝起名 起名源码 php源码
1
基于MATLAB的ls和dft+ls信道估计实验报告
2024-07-06 20:28:06 585KB ofdm
1
在现代汽车技术中,辅助驾驶系统(ADAS)扮演着越来越重要的角色,旨在提升行车安全性和驾驶舒适性。其中,自适应巡航控制(Adaptive Cruise Control, ACC)是ADAS的一项核心功能,它允许车辆自动调整速度以保持与前方车辆的安全距离。而“弯道限速辅助”则是自适应巡航控制在复杂路况下的一个高级扩展,它专门针对弯道路段,以确保车辆在过弯时能够安全、稳定地行驶。 自适应巡航控制(ACC)的基本工作原理是通过雷达传感器或激光雷达持续监测与前方车辆的距离,并根据预设的跟车距离自动调整本车的行驶速度。系统通常有多个预设的跟车距离等级,驾驶员可以根据自身需求选择。当前车减速或加速时,ACC系统会相应调整本车的速度,甚至在必要时完全停止车辆,以避免碰撞。 弯道限速辅助(Curve Speed Assist, CSA)是ACC系统的一个智能补充,尤其在高速公路和乡间道路上的弯道行驶时非常有用。该功能基于高精度地图数据和车辆动态信息,如车辆的转向角、侧向加速度等,来预测即将进入的弯道的曲率。一旦检测到车辆即将进入弯道,系统会自动降低车速,以符合安全过弯的最高速度,这样可以防止因过快入弯导致的失控或者打滑。 CSA系统的工作流程大致如下:车辆的传感器和导航系统识别出前方的弯道;接着,系统分析弯道的半径和当前车速;然后,根据车辆的物理特性(如轮胎抓地力、车身稳定性等)计算出安全过弯速度;如果当前车速超过这个安全值,系统将逐步降低车速,使车辆在进入弯道时处于合适的速度。 除了提高行车安全,弯道限速辅助还有助于改善驾驶体验。在没有弯道限速辅助的情况下,驾驶员可能需要频繁地调整车速以应对变化的路况,这在长途驾驶中会增加疲劳感。而CSA系统可以自动处理这些细节,使驾驶员能够更加专注于道路状况,享受更轻松的驾驶旅程。 然而,任何辅助驾驶系统都不是万能的,驾驶员仍然需要时刻保持警觉并准备接管控制。尽管CSA和ACC能够显著减少因速度不当引起的事故,但在遇到未在地图上标注的障碍物或者极端天气条件时,人类驾驶员的判断仍然是不可或缺的。 辅助驾驶系统,尤其是结合了弯道限速辅助的自适应巡航控制,为现代驾驶提供了智能且安全的解决方案。随着技术的不断发展,我们期待这些系统在未来能够变得更加智能化,进一步提升道路安全和驾驶体验。
2024-07-03 17:10:21 679KB 辅助驾驶
1
这是人体关键点检测(人体姿态估计)Android Demo App,更多项目请参考: 人体关键点检测1:人体姿势估计数据集(含下载链接) https://blog.csdn.net/guyuealian/article/details/134703548 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 https://blog.csdn.net/guyuealian/article/details/134837816 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797
2024-07-02 20:45:17 41.56MB android 人体关键点检测 人体姿态估计
1