利用大数据与人工智能分析预测金融市场_huanLing
2024-10-29 16:48:18 12.07MB
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:17:00 8.06MB python 人工智能 ai
1
人工智能导论》是西安电子科技大学研究生一年级的一门核心课程,由Mrs.Lll讲授。这门课程深入探讨了人工智能的各个方面,旨在为学生提供一个全面而深入的AI理论基础。通过提供的课件,我们可以看到课程涵盖了多个关键章节,包括群智能算法、谓词逻辑表示与搜索技术、人工神经网络、规则演绎系统、不确定性推理、遗传算法、机器学习、专家系统以及数据挖掘。 让我们关注“群智能算法”这一章。群智能算法是模拟自然界群体行为的优化方法,如蚂蚁算法、蜜蜂算法等。这些算法利用群体中的个体相互协作,解决复杂问题,常应用于组合优化、路径规划等领域。 "第4章 谓词逻辑表示及其搜索技术"讲解了如何用谓词逻辑来表达复杂的知识,并介绍了在知识库中进行推理的搜索技术。谓词逻辑是一种强大的形式逻辑系统,用于精确地表达和推断知识,而搜索技术则是解决知识表示中的推理问题的关键。 "第9章 人工神经网络"则深入到神经网络的理论与应用。人工神经网络是模仿生物神经元网络构建的计算模型,广泛用于图像识别、语音处理和自然语言理解等多个AI领域。 "人工智能课程介绍"可能包含了课程的目标、教学大纲、评价标准等内容,帮助学生了解课程的整体结构和学习要求。 "第7章 遗传算法"是一种基于生物进化原理的全局优化算法,它通过模拟自然选择和遗传过程,来寻找问题的最佳解。 "第6章 不确定性推理"探讨了在信息不完全或不确定的情况下如何进行推理。这在现实世界中尤为重要,因为许多问题都伴随着数据的缺失或噪声。 "第10章- 机器学习"是AI的核心部分,讲解了监督学习、无监督学习、强化学习等主要机器学习范式,以及各种经典算法如决策树、支持向量机和神经网络。 "第11章 专家系统"介绍了如何设计和构建能模拟人类专家决策的计算机程序。专家系统通常包含知识库和推理引擎,能够根据特定领域的专业知识进行推理。 "第12章-数据挖掘"讲解了从大量数据中发现有价值信息的过程,包括预处理、模式发现、关联规则学习等关键技术。 综合这些章节,我们可以看出这门课程全面覆盖了人工智能的基础理论和实践应用,对于想要深入理解AI的学生来说是一份宝贵的资源。通过学习这些内容,学生将能够掌握人工智能的核心概念,具备解决实际问题的能力。
2024-10-19 19:13:56 34.57MB ppt
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:09:31 4.15MB 人工智能 ai python
1
人工智能AI进阶 人工智能课件 课外拓展10阶段十 CV基础+项目更新.rar 17.4GB 课外拓展09阶段九 阶段五NLP基础补充视频.rar 542.9MB 课外拓展08阶段八 阶段四深度学习基础补充视频.rar 531.7MB 课外拓展07阶段七 阶段三 机器学习更新.rar 3.1GB 课外拓展06阶段六 阶段二 Python高级更新.rar 8.6GB 课外拓展05阶段五 阶段一 python基础更新.rar 6.5GB 课外拓展04阶段四 入学第一课.rar 0.0MB 课外拓展03阶段三 赠送-文本摘要项目.rar 4.2GB 课外拓展02阶段二 赠送-人脸支付.rar 2.9GB 课外拓展01阶段一 HR面试技巧.rar 619.3MB 主学习路线07阶段七 人工智能面试强化赠送.rar 5.3GB 主学习路线06阶段六 人工智能项目实战.rar 22.7GB 主学习路线05阶段五 NLP自然语言处理.rar 10.2GB 主学习路线04阶段四 计算机视觉与图像处理.rar 10.6GB 主学 ### 人工智能AI进阶课程概览 #### 一、课程背景及目标 本课程旨在为学员提供一个系统性的人工智能(AI)学习路径,帮助学员掌握从基础到进阶的各项关键技术,包括但不限于Python编程、机器学习、深度学习、计算机视觉(CV)、自然语言处理(NLP)等领域。通过丰富的理论知识讲解与实践项目操作相结合的方式,让学员能够将所学应用于实际工作中。 #### 二、课程结构与内容概述 **1. 主学习路线** - **主学习路线07阶段七:人工智能面试强化** - 内容规模:5.3GB - 内容概述:针对求职者设计的一套全面复习材料,涵盖AI领域的面试题型、答题技巧及常见问题解析等,帮助学员提高面试成功率。 - **主学习路线06阶段六:人工智能项目实战** - 内容规模:22.7GB - 内容概述:一系列真实世界中的AI项目案例分析与实践,覆盖多个应用场景和技术领域,如推荐系统、自动驾驶等。 - **主学习路线05阶段五:NLP自然语言处理** - 内容规模:10.2GB - 内容概述:深入探讨NLP技术的基础原理及其在聊天机器人、情感分析等场景中的应用。 - **主学习路线04阶段四:计算机视觉与图像处理** - 内容规模:10.6GB - 内容概述:聚焦于CV领域的核心技术与算法,包括图像识别、目标检测、图像分割等内容,并结合实例进行讲解。 **2. 课外拓展资料** - **课外拓展09阶段九:阶段五NLP基础补充视频** - 内容规模:542.9MB - 内容概述:作为对主学习路线中NLP部分的补充,这些视频提供了更深层次的技术细节介绍。 - **课外拓展08阶段八:阶段四深度学习基础补充视频** - 内容规模:531.7MB - 内容概述:深化对深度学习的理解,涵盖了神经网络的基本概念以及如何构建和优化深度学习模型的方法。 - **课外拓展07阶段七:阶段三机器学习更新** - 内容规模:3.1GB - 内容概述:最新的机器学习教程,包括监督学习、无监督学习等多种学习方法的最新进展。 - **课外拓展06阶段六:阶段二Python高级更新** - 内容规模:8.6GB - 内容概述:Python编程语言高级用法的集合,包括面向对象编程、高级数据结构、异步编程等内容。 - **课外拓展05阶段五:阶段一python基础更新** - 内容规模:6.5GB - 内容概述:适合初学者的Python基础教程,介绍了变量、数据类型、控制结构等基础知识。 - **课外拓展04阶段四:入学第一课** - 内容规模:0.0MB - 内容概述:简短的介绍性课程,帮助学员快速了解整个学习路径的结构和规划。 - **课外拓展03阶段三:赠送-文本摘要项目** - 内容规模:4.2GB - 内容概述:一个完整的文本摘要项目案例,涉及文本预处理、特征提取、模型训练等多个环节。 - **课外拓展02阶段二:赠送-人脸支付** - 内容规模:2.9GB - 内容概述:基于计算机视觉技术的人脸识别和支付系统开发教程,包括硬件选型、软件实现等方面。 - **课外拓展01阶段一:HR面试技巧** - 内容规模:619.3MB - 内容概述:专为技术岗位求职者准备的面试技巧指南,包括简历撰写、面试流程、沟通技巧等内容。 #### 三、总结 通过上述详细的课程结构与内容介绍,可以看出该课程体系覆盖了人工智能领域的各个方面,既注重基础知识的培养,又强调实践技能的提升。无论是对于想要进入AI行业的新人还是希望进一步提升技能的专业人士来说,都是一个非常有价值的学习资源。
2024-10-17 12:27:40 93B 人工智能 计算机视觉 图像处理
1
基于人工智能的人脸识别系统的毕业论文,可对同学们的写论文作参考。随着人工智能技术的迅猛发展,人脸识别系统逐渐成为计算机视觉领域的重要研究方向。基于人工智能的人脸识别系统通过机器学习、深度学习等技术,可以实现对人脸的高效、准确识别,广泛应用于安全监控、金融、智能家居等领域。本论文将探讨基于人工智能的人脸识别系统的技术原理、算法选择、应用场景以及未来发展方向。
2024-10-16 19:22:18 3.88MB 人工智能 毕业设计
1
ChatGPT 初识 解释为什么选择介绍ChatGPT ChatGPT 工作原理 语言模型和生成式对话系统的概念 ChatGPT 应用场景 ChatGPT在实际应用中的重要性 ChatGPT 优势挑战 在线客服和技术支持中的应用案例ChatGPT是一个由OpenAI开发的强大语言模型,基于GPT-3.5架构。它具备广泛的语言理解和生成能力,可以与人类进行自然而流畅的对话。ChatGPT可以处理各种问题,提供信息、解释概念、帮助解决问题,还能进行闲聊和娱乐。 【AI人工智能介绍】 人工智能(Artificial Intelligence, AI)是一门计算机科学的分支,致力于研究如何使计算机模拟人类智能的行为。这一领域涵盖了机器学习、深度学习、自然语言处理(NLP)、计算机视觉等多个子领域。AI的目标是创建能自主学习、理解和适应复杂环境的智能系统。 【ChatGPT初识】 ChatGPT是由OpenAI公司开发的一款强大语言模型,基于GPT-3.5架构。ChatGPT的设计目标是与用户进行自然、流畅的对话,其功能包括但不限于回答问题、提供解释、帮助解决问题以及参与闲聊。通过在海量的文本数据上进行训练,ChatGPT学会了理解和生成多种语言的能力,能够处理各种主题的问题。 【工作原理】 ChatGPT的工作原理依赖于语言模型和生成式对话系统。语言模型是通过对大量文本数据进行学习,理解语言的结构和模式。ChatGPT采用了自注意力机制的Transformer架构,这使得模型能捕捉输入序列的上下文信息,理解单词之间的相对位置,进而生成连贯的回应。在处理问题时,ChatGPT不仅根据问题本身,还会考虑之前的对话历史,以提供更符合情境的回答。 【应用场景】 ChatGPT的应用场景广泛,包括在线客服、技术支持、教育、创意写作等多个领域。在客服和技术支持中,ChatGPT可以快速提供信息,解答用户疑问,降低人工客服的压力。在教育领域,它可以帮助学生理解和解决学术问题。在创意写作方面,ChatGPT可以协助作者生成故事线、角色设定等,激发创作灵感。 【优势与挑战】 ChatGPT的优势在于其强大的语言理解和生成能力,能提供及时、准确的反馈。然而,也存在挑战,如可能产生的误导性信息、隐私问题以及对人类工作的潜在替代。在实际应用中,需要不断优化模型,提高其准确性和安全性,同时平衡技术进步与社会伦理的考量。 【微调与应用案例】 为了适应特定任务,ChatGPT可以进行微调,即在原始模型基础上,使用特定领域的数据进行进一步训练。微调过程包括数据准备、模型训练、超参数调整、评估与调优。通过这种方式,ChatGPT能够在特定领域,如医疗咨询、法律援助等,提供更为专业和针对性的服务。 AI和ChatGPT的发展正在深刻改变我们的生活方式,它们在各个领域的应用不断拓展,既提高了效率,也带来了新的挑战。作为一项前沿技术,ChatGPT将持续影响和推动人工智能的前进。
2024-10-15 10:11:10 42.22MB 人工智能 课程资源
1
自然语言理解(Natural Language Understanding, NLU)是人工智能领域的一个重要分支,主要研究如何让计算机理解和解析人类使用的自然语言。本章重点介绍了自然语言理解的基本问题、研究进展、理解过程的层次,以及句法和语义的自动分析方法。 语言理解涉及到词汇、语法、词法、句法等多个层面。语言是由词汇组成的,每个词汇按照特定的语法规则组合成语句,进而形成更复杂的表达。理解语言不仅要求识别词汇的词序和概念,还需要理解语义的细节,如词义、形态、词类和构词法。此外,还要处理词汇的多义性、歧义性以及在不同语境中的变化。 自然语言理解的研究历史可以追溯到早期的机器翻译。从20世纪70年代对对话系统的研究,到80年代广泛应用和机器学习的活跃,再到如今对专家系统知识获取的贡献,自然语言理解不断推动着计算机与人类交流的能力进步。这一领域的研究也促进了计算机辅助语言教学和计算机语言设计等领域的发展。 在理解过程中,语言分析通常分为语音分析、词法分析、句法分析和语义分析四个层次。语音分析处理语音信号,转化为文本;词法分析识别单词及其属性;句法分析关注句子结构,确保符合语法规则;语义分析则理解句子背后的深层意义。 在句法分析中,模式匹配和转移网络是一种直观的方法。例如,通过状态转移图(Transition Network, TN)来表示句子结构,其中状态代表解析的不同阶段,弧上的条件指示何时进行状态转移。此外,扩充转移网络(Augmented Transition Network, ATN)增加了操作,使得网络能更好地处理复杂语法规则。词汇功能语法(LFG)则通过直接成分结构(C-Structure)和功能结构(F-Structure)来描述句子的语法和语义特征,通过代数变换求解功能结构,以实现更精确的理解。 自然语言理解是一个涉及多方面知识的复杂任务,包括语言学、计算机科学和人工智能等。随着技术的进步,自然语言理解不仅在理论研究上取得了显著成就,也在实际应用中发挥着越来越重要的作用,如智能助手、聊天机器人、信息检索等。未来,自然语言理解将继续向着更准确、更人性化的方向发展,以更好地服务于人类社会。
2024-10-14 23:35:46 516KB 人工智能
1
horn子句归结(同济大学人工智能课程设计)_horn-resolution
2024-10-14 13:13:03 7KB
1
ChatGPT,人工智能的旷世巨作。ChatGPT是一种聊天机器人软件,OpenAI于2022年11月推出的聊天机器人,具备人类语言 交互外复杂 的语言工作,包括自动文本生成、自动问答、自动摘要等多重功能,应用场景广阔,相较于上个版本更像人类一样聊天交流。O penAI除了 ChatGPT还包括Dal·E2、 Whisper等项目分别是自动绘图、自然语言翻译等软件。OpenAI的商业模式即API接口收费,可根据 不同项目需 求进行收费,我们认为其商业模式属于底层模型开放性标准化SAAS服务模式。我国仍处于初期阶段,以辅助生成内容服务为主 ,我们认为 未来有望形成相关SAAS模式。 ChatGPT促使AIGC快速商业化发展。GPT系列是AIGc的一种商业化方向,目前AIGC已经实现商业化的方向有A写作、AI作图、 AI底层建模, 未来AI生成视频和动画领域有望快速商业化发展。AIGC也被认为是继UCC、PGC/UCC之后的新型内容生产方式,有望解决PCC/UGC 创作质量参 差不齐或是降低其有害性内容传播等问题,有望在实现创意激发,提升内容多样性的同时降本增效,并大规模使用。目前我国已 ChatGPT,作为人工智能领域的里程碑之作,是由OpenAI在2022年11月推出的一款聊天机器人软件。它的出现标志着人工智能技术的巨大进步,尤其在自然语言处理领域。ChatGPT不仅能够像人类一样进行流畅的对话,还能执行一系列复杂的语言任务,如自动文本生成、自动问答和自动摘要。这些功能的实现依赖于其背后的先进算法和庞大的训练数据集,使得ChatGPT在各种应用场景中展现出巨大的潜力。 OpenAI的ChatGPT并非孤立存在,它与Dall·E2(自动绘图)和Whisper(自然语言翻译)一起,构成了OpenAI的产品矩阵,涵盖了图像生成和语音处理等领域。OpenAI的商业模式是通过API接口收费,提供标准化的SAAS服务,允许开发者根据需求接入其强大的AI能力,从而为不同的应用场景定制解决方案。这一模式有望在全球范围内得到广泛应用,尤其是在中国,虽然目前仍处于初级阶段,但预计未来将逐步发展出类似的SAAS服务。 AIGC(人工智能生成内容)是ChatGPT推动的一个重要方向,它代表了继UGC(用户生成内容)和PGC(专业生成内容)之后的新一代内容生产方式。AIGC已经在AI写作、AI作图和AI底层建模等领域实现商业化,未来在视频和动画生成方面也将有显著进展。AIGC有望解决传统内容生产中的质量问题,减少有害内容的传播,并提高效率,降低成本。在中国,已有如百度的AIGC数字人主播度晓晓和百家号TTV等项目,展示了AIGC在实际应用中的可能性。 随着AIGC的快速发展,相关产业链上的企业将受益。这包括AI处理器厂商,他们提供的自研处理器能为AIGC提供高效能、低能耗的计算支持;AI商业算法的落地厂商,它们在自然语言处理、机器视觉等领域的技术优势将助力AI应用的推广;以及拥有AIGC技术储备的应用厂商,它们可以通过创新应用提升内容多样性和降低成本,进一步开拓市场。因此,投资者可以关注具备相关技术的公司,如寒武纪、商汤、海光信息、科大讯飞等。 然而,AIGC的发展也面临挑战,如核心技术升级可能不如预期,AI伦理问题的讨论日益激烈,政策推进速度可能较慢,以及国际贸易摩擦可能对行业发展带来不确定性。在投资时,需要充分考虑这些风险因素。 ChatGPT及其引发的AIGC热潮正在深刻改变人工智能产业,开启了一个全新的AI纪元。随着技术的不断成熟和应用场景的拓宽,相关企业和整个行业都将迎来前所未有的机遇。
2024-09-29 10:05:44 2.79MB OpenAI 人工智能
1