convex optimization theory athena scientific 2009 by Dimitri P. Bertsekas
2021-10-18 23:27:15 3.33MB convex optimizat
1
该资源为MIT的信息论研究生教材
2021-10-18 23:16:25 7.56MB 信息论 MIT
1
这是一本矩阵理论,涉及的知识面很广,里面给出的方法很经典,适合数学以及工科专业的研究生学习,特别是控制论相关专业的学生很值得拥有这本书。
2021-10-18 22:25:28 8.89MB 矩阵理论
1
Introduction to Axiomatic Set Theory (Graduate Texts in Mathematics,) Wilson M. Zaring Gaisi Takeuti Springer-Verlag Aug 31, 1971 ASIN: 0387053026 ISBN: 0387053026 Sales Rank: 2379366
2021-10-18 22:10:56 1.87MB gtm Axiomatic
1
Inequalities: Theory of Majorization and Its Applications I Theory of Majorization 1 Introduction 3 A Motivation and Basic Definitions . . . . . . . . . . 3 B Majorization as a Partial Ordering . . . . . . . . . 18 C Order-Preserving Functions . . . . . . . . . . . . . 19 D Various Generalizations of Majorization . . . . . . . 21 2 Doubly Stochastic Matrices 29 A Doubly Stochastic Matrices and Permutation Matrices . . . . . . . . . . . . . . . . . . . . . . . . 29 B Characterization of Majorization Using Doubly StochasticMatrices . . . . . . . . . . . . . . . . . . 32 C Doubly Substochastic Matrices and Weak Majorization . . . . . . . . . . . . . . . . . . . . . . 36 D Doubly Superstochastic Matrices and Weak Majorization . . . . . . . . . . . . . . . . . . . . . . 42 E Orderings on D . . . . . . . . . . . . . . . . . . . . 45 F Proofs of Birkhoff’s Theorem and Refinements . . . 47 G Classes of Doubly Stochastic Matrices . . . . . . . . 52 xvii xviii Contents H More Examples of Doubly Stochastic and Doubly Substochastic Matrices . . . . . . . . . . . . . . . . 61 I Properties of Doubly Stochastic Matrices . . . . . . 67 J Diagonal Equivalence of Nonnegative Matrices . . . 76 3 Schur-Convex Functions 79 A Characterization of Schur-Convex Functions . . . . 80 B Compositions Involving Schur-Convex Functions . . 88 C Some General Classes of Schur-Convex Functions . 91 D Examples I. Sums of Convex Functions . . . . . . . 101 E Examples II. Products of Logarithmically Concave (Convex) Functions . . . . . . . . . . . . . 105 F Examples III. Elementary Symmetric Functions . . 114 G Muirhead’s Theorem . . . . . . . . . . . . . . . . . 120 H Schur-Convex Functions on D and Their Extension to Rn . . . . . . . . . . . . . . . . . . . 132 I Miscellaneous Specific Examples . . . . . . . . . . . 138 J Integral Transformations Preserving Schur-Convexity . . . . . . . . . . . . . . . . . . . . 145 K Physical Interpretations of Inequalities . . . . . . . 153 4 Equivalent Conditions
2021-10-18 21:31:19 4.4MB dpf
1
Networks and Grids: Technology and Theory Thomas G. Robertazzi
2021-10-18 06:58:37 2.32MB Grid
1
《通信的数学理论》\nA Mathematical Theory of Communication信息论的奠基性论文,美国数学家C.E.香农所著。这篇论文的发表标志一门新的学科──信息论的诞生。 压缩包为论文英文版+中文版,均为PDF超清,方便学习
2021-10-17 19:23:22 1.46MB 通信 数学理论 中文版 英文版
1
Authors Krishna B. Athreya Soumendra N. Lahiri Copyright 2006 Publisher Springer-Verlag New York DOI 10.1007/978-0-387-35434-7 This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix.
2021-10-17 15:17:42 4.95MB 测度论概率论
1
RF Circuits Design.Theory and Applications
2021-10-15 17:26:44 17.87MB RF
1
图论(graph theory)方面的教材,中文非扫描版,很少见的,欢迎大家下载。。。。。。。。
2021-10-15 11:28:31 562KB 图论 graph theory
1