局部Retinex算法增强 ParticalRetinexEnhance
2021-11-02 19:40:18 2KB Retinex
1
局部均值滤波去噪算法在目前所有滤波去噪算法中效果最为显著,但其运行速度较慢,针对该缺点提出了一种基于快速非局部均值滤波算法,运用插值算法将邻域权值计算出来,速度有了明显提升。
2021-11-02 17:37:56 4.94MB 去噪
1
抽象总结:局部注意在编码器-解码器体系结构中使用LSTM实现抽象总结
2021-11-02 16:07:17 23KB nlp deep-learning tensorflow lstm
1
线性回归是目前进行机器人预测的一个很好的算法,并可以用于很多领域的预测
2021-11-02 15:31:29 685KB 线性回归 LWR 预测
1
局部加权投影回归(LWPR)是一种完全增量的在线算法,用于在高维空间中进行非线性函数逼近,能够处理冗余和不相关的输入维。 它的核心是使用局部线性模型,该模型由输入空间中选定方向上的少量单变量回归所跨越。 使用偏最小二乘(PLS)的局部加权变体来进行降维。 请引用:[1] Sethu Vijayakumar,Aaron D'Souza和Stefan Schaal,《高维增量在线学习》,《神经计算》,第一卷。 17号,第12卷,第2602-2634页(2005)。 [2] Stefan Klanke,Sethu Vijayakumar和Stefan Schaal,《局部加权投影回归的图书馆》,《机器学习研究》(JMLR),第1卷。 9,623--626(2008)。 代码网站上的更多详细信息和使用指南。
2021-11-02 15:28:11 606KB 开源软件
1
基于APO算法的群机器人动态搜索仿真系统
2021-11-02 11:48:54 2.81MB APO算法 群机器人 全局搜索 局部搜索
1
 针对光伏阵列在阴影下具有多个最大功率点,而传统的优化算法不能有效跟踪全局最大功率点的问题,提出了一种基于粒子群优化算法的跟踪算法,在Matlab平台上利用M函数对光伏阵列和跟踪算法进行编程。仿真结果表明:该控制算法不仅具有跟踪速动快、稳态精度高的特点,而且能够跟踪全局最大功率点,比传统的优化算法更有优势。
1
文章针对近年来的无人驾驶汽车路径规划算法进行总结和归纳。首先对目前主流的环境建模方法进行阐述;其次对路径规划算法进行介绍,通过分析其优缺点,指出融合轨迹规划算法具有最好的适用性;最后总结当前研究挑战并提出了相关建议。
1
为提高人脸表情分类的识别率和实时性,提出一种基于卷积神经网络(CNN)局部特征融合的人脸表情识别方法。首先,构建CNN模型,学习眼睛、眉毛、嘴巴3个局部区域的局部特征;然后,将局部特征送入到支持向量机(SVM)多分类器中获取各类特征的后验概率;最后,通过粒子群寻优算法优化各特征的最优融合权值,实现正确率最优的决策级融合,完成表情分类。实验表明,本文方法在CK+和JAFFE数据库的平均识别率分别达到了94.56%和97.08%,与其他识别方法相比,本文方法性能优越,能提高算法的识别率和稳健性,同时保证了算法的实时性。
2021-10-31 14:42:24 4.13MB 机器视觉 表情识别 卷积神经 决策融合
1
提出将高斯平滑后的数据项和非局部中值滤波相结合的光流算法,以实现降噪并提高光流估计的稳健性和精度。该方法的数据项使用稳健的L1范数,通过高斯滤波对数据项平滑处理,抑制噪声干扰,并借助原始-对偶算法改善变分光流的求解效率;为进一步提高光流场的估计精度,引入了非局部中值滤波的全局优化策略;为提高算法对较大位移量估计的适应性,运用了由粗到精的金字塔方法。采用Middlebury光流数据库图像和真实场景图像对改进的TV-L1光流估计算法进行了实验验证。结果表明,提出的改进变分光流算法具有较强的稳健性,其光流估计精度优于传统的TV-L1模型算法。
2021-10-28 16:20:46 3.87MB 机器视觉 变分光流 非局部中 数据项
1