这项工作解决了使用压缩传感 (CS) 技术从单传感器相机恢复多光谱图像的问题。 这是一项探索性工作,因为以前没有解决过这个特殊问题。 因此,我们不会试图“竞争”和“超越”任何先前的工作。 我们考虑了两种类型的传感器阵列——均匀和随机; 以及两种恢复方法-Kronecker CS和小组稀疏重建。
2022-03-29 13:15:23 19.13MB matlab
1
利用自行研制的便携式拉曼光谱仪,研究了甘肃、青海和新疆3个产地软玉的拉曼光谱特征,并对其光谱差异进行解析;基于马氏距离判别方法和随机森林判别方法实现了3个产地软玉的无损鉴别。结果表明:利用马氏距离判别方法和随机森林判别方法可以对具有相同拉曼峰的不同产地的软玉进行鉴别,鉴别准确率分别为87.5%和95.83%。
2022-03-28 16:53:45 3.67MB 光谱学 产地鉴别 拉曼光谱 马氏距离
1
为了解决基于深度学习的高光谱图像分类方法对于小样本数据分类精度低的问题,提出了一种基于多尺度残差网络的分类模型。该模型通过在残差模块中加入分支结构,分别构造了基于光谱特征和空间特征的提取模块,实现了空间特征和光谱特征的多尺度提取融合,充分利用了高光谱图像中丰富的空谱信息。此外,所提模型使用了动态学习率、批归一化以及Dropout等来提高计算效率和防止过拟合。实验结果表明,该模型在Indian Pines和Pavia University数据集上分别取得了99.07%和99.96%的总体分类精度,与支持向量机和现有的深度学习方法相比,所提模型有效地提高了针对小样本高光谱图像的分类性能。
2022-03-28 16:27:30 9.05MB 遥感 高光谱图 小样本 多尺度
1
Spectral Python(SPy)是一个python软件包,用于读取,查看,操作和分类高光谱图像(HSI)数据。 SPy包括用于聚类,降维,监督分类等功能。
2022-03-26 22:09:22 154KB 开源软件
1
不同植被类型的光谱曲线比较 To be continued…
2022-03-25 16:59:55 288KB 遥感
1
针对LANDSAT-5 TM多光谱图像存在散粒噪声问题,提出一种基于异常探测和光谱归一化处理来检测及去除噪声的算法。视散粒噪声为强光谱异常,基于RX算子探测像元异常,根据异常分布统计特征确定含散粒噪声的像元;再以含散粒噪声的像元为中心,利用邻域内像元各分量上的光谱归一化分值,确定散粒噪声所在波段。利用邻域内具有最相似光谱的像元对应分量替换散粒噪声所在的像元分量。实验表明,该算法能够有效去除TM图像中的散粒噪声。
1
SeaBreeze是一个设备驱动程序库,提供了用于选择Ocean Optics光谱仪的接口。 它使用C / C ++编写,可在Windows(XP / 7/8),MacOSX和Linux(x86 / x64 / ARM)上构建和运行。
2022-03-23 15:02:21 14.49MB 开源软件
1
针对煤炭原始近红外光谱数据中存在噪声的问题,提出了基于De-SNV与小波阈值去噪组合的煤炭近红外光谱数据预处理方法。采用缺省软阈值法进一步对经过Savitzky-Golay平滑和De-SNV处理的光谱数据去噪,并分别建立了水分、灰分和挥发分的PLS校正模型,通过分析模型的预测性能对该方法的有效性进行评估。实验结果表明,经过该方法预处理的光谱数据所对应的PLS校正模型性能明显优于使用原始光谱数据所建立的PLS校正模型,水分、灰分和挥发分的PLS校正模型的预测均方根误差分别降低至0.007 07,0.040 8,0.008 66,决定系数分别提高至0.858 7,0.743 8,0.778 5。
2022-03-22 15:09:09 257KB 行业研究
1
水分含量多少是煤质好坏的重要指标,在研究煤的基础理论及煤加工中具有特殊意义。本实验采用多元散射矫正(MSC)、平滑处理、微分处理等预处理方法,结合主成分回归法及偏最小二乘法分析了预处理方法对煤粉全水分模型的影响;发现多元散射矫正(MSC)处理结合偏最小二乘法获得的模型最佳,其校正模型R=0.988 1,RMSEC=0.501,预测结果 R=0.955,RMSEC=0.601;发现平滑处理也可以提高模型可靠性,但过度平滑会使模型可靠性变差;综合比较主成分回归法模型与偏最小二乘法模型,发现偏最小二乘法获得的模型要好于主成分回归获得的模型。
2022-03-22 15:05:53 621KB 近红外光谱 预处理 最小二乘法
1