IMDB_Sentiment_Analysis
鉴于大量的在线评论数据(Amazon,IMDB等),情绪分析变得越来越重要。 在这个项目中,建立了一个情感分类器,用于评估一段文字的极性是正还是负。 情感分析是在Keras随附的IMDB数据集上完成的。 它由25,000个训练样本(其中20%是验证样本)和25,000个测试样本组成。 数据集中的所有单词均已预先标记。 使用自训练的单词嵌入(Keras嵌入层)。 我训练了不同的模型,其中一个模型包含一个LSTM层。 它在10个时元上的准确度为84%。 第二个示例由两组Conv1D和MaxPooling1D图层组成,后面是标准GRU图层。 观察到85%的准确性。 我已经将CuDNN层用于LSTM和GRU,因为它们在GPU上的速度比标准LSTM和GRU层快得多。 所有实现都是使用Keras进行的。 另一个具有RMS Prop精度的示例为84%,而
1