CNN图像分类 这个基于CNN的模型将图像分为9类(“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”)使用tensorflow,keras,numpy,scikit-learn,matplotlib
2021-12-29 12:52:30 11KB JupyterNotebook
1
在网上搜过发现关于keras下的模型融合框架其实很简单,奈何网上说了一大堆,这个东西官方文档上就有,自己写了个demo: # Function:基于keras框架下实现,多个独立任务分类 # Writer: PQF # Time: 2019/9/29 import numpy as np from keras.layers import Input, Dense from keras.models import Model import tensorflow as tf # 生成训练集 dataset_size = 128*3 rdm = np.random.RandomState(1) X
2021-12-29 11:03:56 50KB AS keras ras
1
在ImageNet上预先训练的Keras分类模型
2021-12-29 03:31:23 39KB Python开发-机器学习
1
三个CNN(卷积神经网络)的例程,分别用TensorFlow、Keras、Pytorch实现,结构清晰,简单易懂。
2021-12-28 10:34:58 58.03MB 例程 TensorFlow Keras Pytorch
1
情感情绪检测是自然语言理解的关键要素。最近,我们将原来的项目迁移到了新的集成系统上,该系统基于麻省理工学院媒体实验室推出的NLP模型搭建而成。代码已经开源了!(详见GitHub:https://github.com/huggingface/torchMoji)该模型最初的设计使用了TensorFlow、Theano和Keras,接着我们将其移植到了pyTorch上。与Keras相比,pyTorch能让我们更自由地开发和测试各种定制化的神经网络模块,并使用易于阅读的numpy风格来编写代码。在这篇文章中,我将详细说明在移植过程中出现的几个有趣的问题:首先,我们来看看torchMoji/DeepM
2021-12-28 10:26:49 193KB 理解情感—从Keras移植到pyTorch
1
Keras应该是最简单的一种深度学习框架了,入门非常的简单. 简单记录一下keras实现多种分类网络:如AlexNet、Vgg、ResNet 采用kaggle猫狗大战的数据作为数据集. 由于AlexNet采用的是LRN标准化,Keras没有内置函数实现,这里用batchNormalization代替 收件建立一个model.py的文件,里面存放着alexnet,vgg两种模型,直接导入就可以了 #coding=utf-8 from keras.models import Sequential from keras.layers import Dense, Dropout, Activatio
2021-12-27 22:01:14 91KB AS keras ras
1
基于Keras实现猫狗大战,25000张猫狗图像的精准分类-附件资源
2021-12-27 21:47:52 23B
1
如下所示: from keras import backend as K from keras.models import load_model models = load_model('models.hdf5') image=r'image.png' images=cv2.imread(r'image.png') image_arr = process_image(image, (224, 224, 3)) image_arr = np.expand_dims(image_arr, axis=0) layer_1 = K.function([base_model.get_input_at(
2021-12-27 21:44:54 49KB AS c fu
1
A practical guide to mastering reinforcement learning algorithms using Keras Key Features: Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action; Get to grips with Keras and practice on real-world unstructured datasets; Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning.
2021-12-26 15:48:39 17.95MB Keras 强化学习 RL Reinforcement
1
UCI甲状腺分类-​​Python,Keras,scikit-learn,ANN 该项目是针对UCI-甲状腺疾病数据集上的分类问题而创建的。 它使用ANN进行预测。 预测类为: 1-甲状腺功能亢进 2次普通 3-普通 数据集 UCI资料库中的甲状腺疾病。 框架/库 凯拉斯 scikit学习 入门 这些说明将使您简要了解如何设置环境并在本地计算机上运行以进行开发和测试。 先决条件 python3.5或更高版本 凯拉斯 scikit学习 麻木 大熊猫 设置和运行测试 运行python -V检查安装 安装所有必需的库。 从终端执行以下命令以运行测试: python main.py 注意:
2021-12-25 09:46:09 156KB python deep-neural-networks deep-learning numpy
1