为了实现肺部病症信号的匹配识别,采用改进型自适应噪声的完全集合经验模态分解(ICEEMDAN)和多层感知机(MLP)相结合的肺音信号特征识别方法。采集肺音信号预处理后经过ICEEMDAN分解得到IMF分量并构造多维特征向量,输入多层感知机(MLP)对正常肺音、哮鸣音、干罗音和中湿罗音信号学习。测试结果表明,该分类方法比极限学习机(ELM)与BP神经网络匹配精准率更高,达到91.67%。
1
斯坦福ML公开课笔记81
2022-08-03 13:00:55 360KB 支持向量机 算法
1
MATLAB向量化编程基础精讲 配套源程序 一本非常好的MATLAB进阶书籍,能提高个人的代码阅读能力和编程能力。
2022-07-27 17:51:46 130KB MATLAB
1
MATLAB用拟合出的代码绘图学士项目:使用Support-Vector Machines和KNN基于EEG数据对愤怒进行分类 以下存储库是学士项目期间使用的代码的枢纽。 该存储库包含用于预处理和分析EEG数据(Matlab),所有统计测试(R)和分类器(Python +)的每一行。 随着项目的进行,本文档的其余部分用作记事本。 它充满了对我们一路重要的项目,在归档项目之前不得更改。 每个脚本都包含解释性注释,以指导读者阅读代码。 线性混合效应模型 验证线性混合效应模型始终需要做两件事: 检查正常性和同质性。 构建一个所谓的“空模型”,并将混合模型的性能与此空模型进行比较。 I.混合效应模型属于参数统计技术(连同t检验和ANOVA检验)一起。 参数方法要求条件之间的差异呈正态分布,即条件A和条件B之间的差异需要近似钟形曲线。 非参数技术没有此限制-它们是“无分布的”-但是,混合模型是参数化的,因此我们需要检查差异是否实际上遵循正态曲线。 混合模型的另一个要求是数据是同质的,即就方差而言,数据集的一部分与另一部分没有很大差异。 下面描述的图检查了两者->形成了两个云,描绘了男性和女性之间
2022-07-25 01:02:16 493.85MB 系统开源
1
由于激光点云数据的无序性、离散性、稀疏性,基于深度学习的三维点云数据的特征提取具有一定难度。针对目前局部信息提取不充分,区域信息的合并有限的问题,提出了一种基于层级边缘卷积的点云分类网络,用于三维视觉中点云模型识别任务。本文采用层级结构的思想,通过层级几何信息模块对特征进行有效提取和归纳。对于每个层级几何信息提取模块,首先对点云模型进行下采样并构建局部区域,对每个局部区域中点与点之间的距离和特征进行建模,获得局部区域的几何信息,最后聚合多个采样点的局部结构特征。实验结果表明,本算法在ModelNet40数据集上的识别准确率为91.5%。与已有的三维点云模型识别分类算法相比,本文算法能够更充分地提取局部信息,进一步提高三维点云模型分类的准确率
1
torchtext的使用总结,并结合Pytorch实现LSTM 版本说明 PyTorch版本:0.4.1 火炬文字:0.2.3 python:3.6 文件说明 Test-Dataset.ipynb Test-Dataset.py使用torchtext进行文本预处理的笔记本和py版。 Test-Dataset2.ipynb使用Keras和PyTorch进行数据集进行文本预处理。 Language-Model.ipynb使用gensim加载预训练的词向量,并使用PyTorch实现语言模型。 使用说明 分别提供了笔记本版本和标准py文件版本。 从零开始逐步实现了torchtext文本预处理,
2022-07-20 01:38:55 43KB python nlp pytorch torchtext
1
主要参考文献: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery,1998,2(2) Vapnik V N. The Nature of Statistical Learning Theory, NY: Springer-Verlag, 1995(中译本:张学工译.《统计学习理论的本质》.清华大学出版社,2000) 【说明】:该书附带介绍了很多科学研究的基本原则,很有启发、借鉴意义。
2022-07-18 00:11:47 1.83MB 浙江大学 支持向量机 经典课件
1
LibSVM是一款简单易用的支持向量机工具包,本资源提供libsvm历史版本下载,历史版本包括3.18-3.25
2022-07-14 20:06:30 5.99MB matlab libsvm 支持向量机
使用支持向量机进行光学字符识别.7z
2022-07-13 16:04:53 142KB 数据集
DB - Balancing Vectorized Query Execution with Bandwidth-Optimized Storage.pdf I had two supervisors at CWI. Martin Kersten always kept an eye on what this new student from Poland was doing, and teased me with hard problems and tricky questions when appropriate. Still, it was Peter Boncz who had to live with all my questions, ideas, problems and complaints almost every day. The discussions we had were one of the most thought-stimulating moments of my life, even when we disagreed on ...
2022-07-12 20:05:15 1.46MB 数据库 向量化 执行器
1