WIN7+anaconda3.6+pycharm3.5 安装dlib+face_recognition ,python进行基于图片的人脸识别
2021-11-13 17:52:44 308KB anacon 安装dlib face_r 人脸识别
1
中文命名实体识别 数据集 本项目尝试使用了多种不同的模型(包括HMM,CRF,Bi-LSTM,Bi-LSTM + CRF)来解决中文命名实体识别问题,数据集用的是论文ACL 2018 中收集的简历数据,数据的格式如下,它的每个行由一个字及其对应的标注组成,标注集采用BIOES,句子之间用一个空行替换。 美 B-LOC 国 E-LOC 的 O 华 B-PER 莱 I-PER 士 E-PER 我 O 跟 O 他 O 谈 O 笑 O 风 O 生 O 该数据集就位于项目目录下的ResumeNER文件夹里。 运行结果 下面是多种不同的模型以及这Ensemble这四个模型预测结果的准确率(取最好): HMM 慢性肾功能衰竭 双线性STM BiLSTM + CRF 合奏 召回率 91.22% 95.43% 95.32% 95.72% 95.65% 准确率 91.49% 95.43% 95.37% 95.74% 95.69% F1分数 91.30% 95.42% 95.32% 95.70% 95.64% 最后一列Ensemble是将这四个模型的预测结果结合起来,使用“
2021-11-13 17:18:20 24.44MB nlp hmm crf named-entity-recognition
1
DeepSpeech剧本 使用DeepSpeech训练语音识别模型的速成班。 快速链接 从这里开始。 本部分将设定您对DeepSpeech手册可以实现的目标的期望,以及开始训练自己的语音识别模型所需的先决条件。 了解了DeepSpeech Playbook可以实现的功能后,本节将概述DeepSpeech本身,其组成部分以及它与您过去使用过的其他语音识别引擎的不同之处。 之前,你可以训练一个模型,你需要收集和格式化数据的语料库。 本节概述了DeepSpeech所需的数据格式,并逐步介绍了从Common Voice准备数据集的示例。 如果您正在训练使用与英语不同的字母(例如带有变音符号的语言)的模型,那么您将需要修改alphabet.txt文件。 了解得分手的工作,以及如何建立自己的得分手。 了解DeepSpeech的声学模型和语言模型之间的差异,以及它们如何组合以提供端到端语音识别。 本节
1
2018年11月 使用智能手机数据集的人类活动识别 资料库概述: 该项目旨在建立一个模型,该模型根据智能手机的Sensor数据预测诸如步行,上楼,下楼,坐着,站着和躺下等人类活动。 仓库有3个ipython笔记本1 :数据预处理和探索性数据分析2 :具有特征数据的机器学习模型3 :基于原始时间序列数据的LSTM模型所有代码都是用python 3编写的依赖 张量流 凯拉斯 麻木 大熊猫 matplotlib 海生的 斯克莱恩 itertools 约会时间 介绍: 每个现代的智能手机都有许多。 我们对加速度传感器和陀螺仪这两种传感器感兴趣。 借助传感器记录数据这是一个6类分类问题,因为我们有6个活动要检测。 该项目分为两部分,第一部分训练,调整和比较Logistic回归,线性支持向量分类器,RBF(径向基函数)SVM分类器,决策树,随机森林,梯度提升决策树模型,并使用领域专家提
2021-11-13 08:29:30 84.62MB JupyterNotebook
1
本人对于深度残差网络理解以及深度残差网络论文原文(作者何凯明)
2021-11-12 09:46:19 652KB 深度学习
1
Matlab环境下运行的模式识别工具箱,解压缩后目录下有英文说明文档和使用教程
2021-11-12 08:44:00 1.46MB Matlab Pattern Recognition
1
Pattern Recognition and Machine Learning 中文版及python代码实现。python代码最好用 jupyter notebook 导入。
2021-11-11 12:03:46 12.57MB PRML,Python
1
基于matlab的指纹识别系统源码 手指静脉识别项目 本项目详细介绍请参阅:图像处理创新实践.pdf 本项目开源许可协议:GPL 3.0(除SIFT算法软件包,此部分软件包另有原作者的许可协议) 项目方案设计介绍 本项目实现手指图像的处理和匹配算法,需要处理的数据是本人不同手指的图像,首先经过图像处理,使得指静脉的纹理增强凸显处理,然后将所有的这些图像进行相互间的匹配,检验类内和类间的匹配度,观察其是否能够明显区分开来,并据此计算正确率。 在本项目中,由于是基于算法原型的研究,因此我们选用了操作便捷的Matlab R2019b软件作为运行环境,在Windows 10 Pro for Workstation操作系统中实现算法。 算法分为以下几个过程: 图像预处理过程中,需要增强图像,提取手指区域,为识别做准备。拟采用CLAHE、直方图均衡、二值化等算法,以达到增强图像的效果;拟采用边缘检测算法实现手指的识别和提取 图像的特征提取和匹配过程中,拟采用两类不同的方法。一是局部不变特征提取算法。这些算法具有检测图像中的特征点,并对特征点的局部区域进行描述和匹配的功能。二是针对二值化图像的模板匹
2021-11-11 10:44:38 78.65MB 系统开源
1
人体活动识别 通过智能手机上的传感器识别人类活动的起始代码 需求知识:加速度计,Matlab,基本ML,Android 持续的: N :原始数据数组的长度 框架大小:250个样本 frameOverlap :50个样本 frameNum :所有帧的数量 dimNum :8 基本变量: rawData :合并一个活动的所有文件中的所有数据,大小为(N * 3) frame :将rawData重塑为大小( frameNum * frameSize * 3 ) 框架:连接所有框架 标签:框架标签 frameData :原始的三轴数据加上扩展的尺寸和大小( frameNum * frameLen * dimNum ) featureData :从frameData中提取特征,也从训练数据中提取特征 TLDR: 只需运行或遵循“数据处理”部分,调整数据文件格式,然后将文件放入文件夹中
2021-11-10 23:26:29 15.9MB MATLAB
1
提供了完整代码。 项目功能要求:可以根据自己手工书写一个数字得带小数,拍照后,程序能将该手写数字转换成对应的数字。 经过查阅资料,将其大致分为一下三个部分: ① 数字的定位、分割、保存. ② 小数点的识别. ③ 网络的训练、测试和最佳模型参数保存加载.
1