为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度。
1
随着电力数据采集成本降低及大规模电网互联等因素,电网中可获取的数据类型日益丰富。以往的集中式预测方法对海量电力数据的分析能力有限。提出基于大数据和粒子群优化BP神经网络短期电力负荷预测,建立短期电力负荷预测模型。利用国家电网的实际负荷数据,采用所提方法进行预测,与实际负荷数据及集中式负荷预测结果进行比较,结果证明,所提方法预测精度较高,降低了负荷预测时间,在实际应用中具有可行性。
1
本文提出了一种求解多目标规划问题的精英粒子群算法。该算法利用精英策略存储每一代Pareto最优解,同时提出了一种最优粒子的选取策略用以克服粒子陷入局部最优的缺点。最后,通过数值实验验证算法的可行性和有效性。
2022-03-26 11:50:24 1.16MB 自然科学 论文
1
带时间窗的粒子群算法求解车辆路径优化问题。
2022-03-25 00:54:31 5KB 粒子群算法;路径优化
matlab优化算法代码,混沌序列优化优化粒子群算法,蚁狮优化算法,附带详细解释,非常适合新手学习理解
1
论文程序,采用粒子群算法对声场的搜索策略进行优化,解决传统波束形成中遍历搜索耗时的问题,论文原文可以查看https://www.researchgate.net/profile/Weilei_Mu/publications
2022-03-24 17:36:17 25KB 粒子群游湖 波束形成
1
使用于电力系统分析、最优潮流计算
1
摘要:内核极限学习机(KELM)通过将低维空间中的线性不可分离数据转换为线性可分离的数据,从而增强了ExtremeLearning Machine(ELM)的鲁棒性。 然而,ELM的内部功率参数是随机初始化的,导致算法不稳定。本文采用主动算子粒子游动优化算法(APSO)来获得KELM的最优初始参数集,从而创建了一个最优的KELM分类器名为APSO-KELM。 在标准遗传数据集上进行的实验表明,与现有的ELM,KELM相比,APSO-KELM具有更高的分类准确性,并且这些算法将PSO / APSO与ELM / KELM相结合,例如PSO-KELM,APSO-ELM,PSO-ELM等。 , APSO-KELM具有良好的稳定性和收敛性,被证明是一种可靠有效的分类算法。
2022-03-22 12:31:35 986KB 研究论文
1
针对目前城市场景下车载自组织网络中的 RSU 部署问题,提出了一种基于连接时长的 RSU 部署方案。该方案在RSU数量受限的情况下,以保证通信连接时长为前提,以最大化服务车辆数目为目的,将部署问题建模成最大覆盖问题,设计了二进制粒子群算法进行求解,并结合真实的北京市路网地图和出租车 GPS数据进行仿真实验。仿真结果表明,该算法是收敛、稳定及可行的,相比贪心算法,该算法求得的部署方案能为更多的车辆提供持续性的网络服务。
1
粒子群算法(PSO)的PPT
2022-03-21 17:09:58 1.3MB 粒子群算法
1