深度学习中的场景识别 在此项目中,我们使用CNN将图像分类为不同的场景。 该项目的目标包括构建使用PyTorch进行深度学习的基本管道,了解不同层,优化器背后的概念以及尝试使用不同的模型并观察性能。 项目设计归因:佐治亚理工学院,CS 6476(2020年秋季),Frank Dellaert
2022-04-01 10:24:13 2.32MB JupyterNotebook
1
天气数据集 用于多类天气数据集(图像分类)的网络 TensorBoard上的图 准确性/测试 精度/训练 损失/测试 损失/火车
2022-03-29 15:02:51 22KB Python
1
为了解决基于深度学习的高光谱图像分类方法对于小样本数据分类精度低的问题,提出了一种基于多尺度残差网络的分类模型。该模型通过在残差模块中加入分支结构,分别构造了基于光谱特征和空间特征的提取模块,实现了空间特征和光谱特征的多尺度提取融合,充分利用了高光谱图像中丰富的空谱信息。此外,所提模型使用了动态学习率、批归一化以及Dropout等来提高计算效率和防止过拟合。实验结果表明,该模型在Indian Pines和Pavia University数据集上分别取得了99.07%和99.96%的总体分类精度,与支持向量机和现有的深度学习方法相比,所提模型有效地提高了针对小样本高光谱图像的分类性能。
2022-03-28 16:27:30 9.05MB 遥感 高光谱图 小样本 多尺度
1
猫和狗图像分类数据【Kaggle竞赛】.zip
2022-03-26 16:22:08 813.57MB 猫和狗图像分类数据 Kaggle竞赛
1
给大家分享一套课程——Pytorch生物医学视觉深度学习课程(图像分类+语义分割+目标检测),共26章,提供课程配套的全部代码+课件+数据下载。包括图像分类,语义分割,目标检测三大领域,共7个完整项目。
2022-03-26 09:49:19 494B Pytorch 深度学习 计算机视觉
1
基于μ=(μ1+μ2)/2迭代的图像分类方法,可用于遥感影像的分类
2022-03-24 14:24:58 39KB 图像分类
1
文章目录TensorFlow2 学习——CNN图像分类1. 导包2. 图像分类 fashion_mnist3. 图像分类 Dogs vs. Cats3.1 原始数据3.2 利用Dataset加载图片3.3 构建CNN模型,并训练 TensorFlow2 学习——CNN图像分类 1. 导包 import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import StandardScaler from sklear
2022-03-24 11:39:57 98KB ens low ns
1
图像分类】基于宽度学习实现minist数据集图像分类matlab源码.md
2022-03-20 19:59:33 28KB 算法 源码
1
颜色分类leetcode cnn-svm-分类器 此示例使用来自 Caltech 图像集 () 的 48 个标记图像的子集,每个标签限制在 40 到 80 个图像之间。 图像被馈送到 Inception V3 的 TensorFlow 实现,其中移除了分类层,以生成一组标记的特征向量。 使用 t 分布随机邻域嵌入 (t-SNE) 对 2048 维特征进行降维,将它们转换为易于可视化的二维特征。 请注意,t-SNE 用作信息步骤。 如果相同的颜色/标签点大多聚集在一起,那么我们很有可能使用这些特征来训练具有高精度的分类器。 将 2048-d 标记的特征呈现给多个分类器。 该项目最初是训练支持向量机对图像进行分类,但为了比较,这已扩展到以下内容: 支持向量机 (SVM) 额外的树 (ET) 随机森林 (RF) K-最近邻 (KNN) 多层感知器 (ML) 高斯朴素贝叶斯 (GNB) 线性判别分析 (LDA) 二次判别分析 (QDA) 显示训练和验证时间,以及每个分类器的准确率。 大多数分类器都使用其默认调整值运行,但在可能的情况下,对那些其默认值远低于 90% 准确率的分类器进行了调整,例
2022-03-19 14:26:42 125.26MB 系统开源
1
【AI科技大本营导读】目前,计算机视觉是深度学习领域最热门的研究领域之一。计算机视觉实际上是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习),工程学(机器人、语音、自然语言处理、图像处理),物理学(光学),生物学(神经科学)和心理学(认知科学)等等。许多科学家认为,计算机视觉为人工智能的发展开拓了道路。那么什么是计算机视觉呢?这里给出了几个比较严谨的定义:“对图像中的客观对象构建明确而有意义的描述”(Ballard&Brown,1982)“从一个或多个数字图像中计算三维世界的特性”(Trucco&Verri,1998)“基于感知图像做出对客观
1