雷赛交、直流伺服驱动器调试说明书
2024-06-25 21:27:09 1.02MB LabVIEW
1
针对MSC Adams难以完成大变形柔性体的建模及仿真,提出将一根钢丝绳细化成若干绳节,绳节之间采用线性衬套连接的建模方法. 运用Adams的宏命令完成滑轮-绳索机构的装配及约束添加,通过合理设置仿真参数,进行动力学仿真. 仿真结果验证了滑轮-绳索机构建模的合理性,为滑轮-绳索机构的冲击和振动问题提供了理论依据.
2024-06-25 17:05:14 554KB 机电工程
1
卷积码在CDMA系统中的应用对于提高通信质量和抗干扰能力具有重要意义。CDMA(码分多址)技术因其大容量特性在无线多媒体系统中占据重要地位,但无线信道的多径传播和随机衰落可能导致通信错误。为了解决这些问题,引入了卷积编码作为提高服务质量(QoS)的有效手段。 卷积码是一种特殊的前向纠错编码,它通过连续的输入比特生成较长的编码序列,从而增加信息的冗余度,提高抗噪声能力。在IS-95 CDMA系统中,前向链路数据信道采用码率为1/2,约束长度为9的卷积码,而反向链路业务信道则使用码率为1/3,同样约束长度为9的卷积码。这种编码方式可以显著改善信道条件差时的通信性能。 维特比译码算法是卷积码常用的高效解码方法。它基于网格图,通过最大似然准则寻找最有可能的码字路径。在算法中,每个节点分配一个状态值,通过比较不同路径的可能性来确定最佳路径。维特比译码分为硬判决和软判决两种方式。硬判决仅根据信号幅度的两个可能状态(通常为二进制0和1)进行判决,而软判决则利用多电平信号,包含更多关于信号强度的信息,因此通常表现出更好的性能。 误码率是衡量编码性能的关键指标。在硬判决情况下,误码率由传输函数和二元对称信道出错概率决定。而在软判决中,误码率表达式考虑了信噪比(Eb/N0)的影响,通常表现为较低的误码率。通过模拟程序和理论分析,可以得到误比特率与信噪比的关系曲线,进一步评估卷积码在硬判决和软判决下的性能差异。研究表明,软判决通常比硬判决提供2~3dB的增益,尤其是在AWGN(加性高斯白噪声)信道中,卷积码的优势更为明显。 当AWGN信道的信噪比超过-1dB时,使用卷积码并采用硬判决译码的系统性能优于未使用卷积码的情况。然而,在存在多径效应的环境中,接收信号受到多个路径的延迟和衰减,导致总的信噪比受到影响,这时计算系统的误比特率需要考虑多径因素。 综上所述,CDMA系统中的卷积码通过提供纠错能力,提升了在恶劣信道条件下的通信可靠性。维特比译码算法,特别是软判决方式,为改善误码率提供了有效手段。结合模拟仿真和理论分析,我们可以深入理解卷积码在实际系统中的性能表现,并据此优化通信设计。
2024-06-24 21:56:01 408KB 综合资料
1
CDGP真题.pdf
2024-06-24 16:56:48 129.8MB
1
IEC62055-41 电能表预付费系统-标准传输规范(STS) 中文版.pdf
2024-06-24 10:47:00 2.23MB IEC62055-41
1
计算机网络复习题(附答案).pdf
2024-06-24 10:34:46 1.33MB
1
这份练习题目是从 60 多所院校历年考研试卷中精选出 1800 道真题,附详细参考答案 ,排版很精心,适合刷题的同学。
2024-06-23 17:43:40 3.38MB 数据结构
1
Python基础语法合集.pdfPython基础语法合集.pdfPython基础语法合集.pdfPython基础语法合集.pdfPython基础语法合集.pdfPython基础语法合集.pdfPython基础语法合集.pdfPython基础语法合集.pdfPython基础语法合集.pdf
2024-06-23 17:06:42 1.37MB python 文档资料 开发语言
1、docker安装kong,konga 2、Kong 基础认证插件(Basic auth) 3、Kong的插件: Key Authentication 4、Kong插件[IP Restriction]使用【黑白名单】 5、kong网关
2024-06-23 15:39:47 5.99MB docker 课程资源 kong konga
1
"通向AGI之路:大型语言模型(LLM)技术精要" 大型语言模型(LLM)技术精要是当前人工智能(AI)领域的热点话题。随着ChatGPT等大型语言模型的出现,人们开始关注LLM技术的发展前景和潜力。本文将从LLM技术的发展历程、技术精要和未来的发展趋势进行讨论。 一、大型语言模型(LLM)技术发展历程 LLM技术的发展可以追溯到Bert时代,但真正的技术跃迁来自GPT 3.0的出现。GPT 3.0不仅仅是一项具体的技术,更体现了LLM应该往何处去的发展理念。自此之后,国内的技术发展gap开始拉大,ChatGPT只是这种发展理念差异的一个自然结果。 二、LLM技术精要 LLM技术的精要在于其能够学习和存储大量数据,并将其转化为有用的信息。LLM可以通过海量数据学习到知识,并将其存储在模型中。随着LLM规模逐步增大,会带来一些影响,如模型的计算复杂度增加和数据存储需求的增加。 三、In Context Learning和Instruct技术 In Context Learning是一种学习方法,它可以让LLM模型在特定上下文中学习和应用知识。Instruct技术是OpenAI推出的一个技术,可以让LLM模型更好地理解和执行指令。In Context Learning和Instruct技术的结合将使LLM模型的能力更加强大。 四、LLM的推理能力和思维链CoT LLM模型具备推理能力,可以通过思维链CoT来实现。思维链CoT是一种基于LLM模型的推理方法,可以让模型更好地理解和推理问题。 五、未来发展趋势 LLM技术的未来发展趋势将是更加强大和智能的模型。随着LLM规模的增加,模型的能力将更加强大,可能会带来一些影响,如模型的计算复杂度增加和数据存储需求的增加。 LLM技术精要在于其能够学习和存储大量数据,并将其转化为有用的信息。LLM技术的未来发展趋势将是更加强大和智能的模型,为人类带来更多的便捷和价值。
2024-06-23 02:32:29 8.49MB 语言模型
1