最新版非常清晰的彩色的pdf + 源代码,作者通过具体的例子,应用两款非常流行的Python框架:Scikit-Learn和TensorFlow,帮助你掌握构建机器学习系统所需要的概念和工具。
2020-01-04 03:15:27 55.81MB 机器学习 python TensorFlow
1
hands on machine learning with scikit learn and tensorflow PDF及随书代码
2020-01-03 11:31:36 56.47MB 人工智能 机器学习  tensorflow   scikit
1
详细介绍了机器学习的方法,主要是通过python实现的,
2020-01-03 11:26:43 39.66MB 深度学习
1
Mastering Machine Learning With Scikit-learn的第二版,英文
2020-01-03 11:24:29 7.86MB machine learning python scikit
1
从外网下载文件太久,打包了一些whl库供大家便捷使用~
2019-12-26 03:24:56 212.62MB python3.7 numpy+mkl matplotlib pandas
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow 英文原版
2019-12-21 22:16:54 36.1MB machine learning
1
scikit-learn 0.19 中文文档pdf完整文字版,共507页, 文档打开口令:beijing8106
2019-12-21 22:12:00 14.08MB sklearn
1
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 2ed 2019.pdf Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow SECOND EDITION Concepts, Tools, and Techniques to Build Intelligent Systems
2019-12-21 22:02:56 69.55MB Machine Learning Scikit-Learn Keras
1
SciKit learn的简称是SKlearn,是一个python库,专门用于机器学习的模块。 SKlearn包含的机器学习方式: 分类,回归,无监督,数据降维,数据预处理等等,包含了常见的大部分机器学习方法。
2019-12-21 21:45:08 4.1MB scikit-learn
1
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. * Explore the machine learning landscape, particularly neural nets * Use Scikit-Learn to track an example machine-learning project end-to-end * Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods * Use the TensorFlow library to build and train neural nets * Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning * Learn techniques for training and scaling deep neural nets
2019-12-21 21:13:12 46.64MB Machine Learning Keras TensorFlow
1