相对论的甘 它是什么? 此仓库具有相对论GAN的简单实现。 相对论修改了GAN目标,从而大大提高了训练的稳定性。 这两个目标是: 对于发电机培训步骤: err_d = ( torch.mean((y_real - torch.mean(y_gene) - 1) ** 2) + torch.mean((y_gene - torch.mean(y_real) + 1) ** 2) ) 凡y_real是鉴别得分的真实数据和y_gene是鉴别得分假数据 对于鉴别器: err_g = ( torch.mean((y_real - torch.mean(y_gene) + 1) ** 2) + torch.mean((y_gene - torch.mean(y_real) - 1) ** 2)
2023-02-19 23:44:37 27KB machine-learning deep-learning torch pytorch
1
TensorFlow2中的分布式RL 是一个使用实现各种流行的分布增强学习算法的存储库。 分布式RL是适用于随机环境的算法。 如果您想研究Distribution RL,则此存储库将是最佳选择。 dist-rl-tf2包含由领先的AI研究机构发布的三种Distribution RL算法。 演算法 C51 论文作者Marc G.Bellemare,Will Dabney,RémiMunos 方法OFF政策/时间差异/无模型仅限离散操作 观念的核心 # idea01. The output of the Q Network is a Distribution Vector, not a Scalar Value. def create_model ( self ): input_state = Input (( self . state_dim ,)) h1 = Dens
2023-02-19 23:32:48 458KB machine-learning deep-learning tensorflow dqn
1
Deep Learning with Python A Hands-on Introduction Authors: Ketkar, Nihkil Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms.
2023-02-19 16:59:46 5.47MB Python Deep Learnin
1
TimeSformer-Pytorch 实现,是一种基于关注点的纯净,简单的解决方案,可以在视频分类上达到SOTA。 该存储库将仅存储性能最佳的变体“时空分散注意力”,无非就是沿空间之前的时间轴的注意力。 安装 $ pip install timesformer-pytorch 用法 import torch from timesformer_pytorch import TimeSformer model = TimeSformer ( dim = 512 , image_size = 224 , patch_size = 16 , num_frames = 8 , num_classes = 10 , depth = 12 , heads = 8 , dim_head = 64 , attn_dropout =
1
使用OpenAI Gym和TensorFlow结合广泛的数学知识来掌握经典RL,深度RL,分布式RL,逆RL等 关于这本书 近年来,随着算法质量和数量的显着提高,《 Python上的动手强化学习》第二版已完全改编为示例丰富的指南,用于学习最新的强化学习(RL)和使用TensorFlow和OpenAI Gym工具包的深度RL算法。 除了探索RL基础知识和基本概念(例如Bellman方程,Markov决策过程和动态规划)之外,第二版还深入探讨了基于价值,基于策略和批评演员的RL方法的全过程,并提供了详细的数学知识。 它深入探索了最新的算法,例如DQN,TRPO,PPO和ACKTR,DDPG,TD3和SAC,从而使基础数学神秘化并通过简单的代码示例演示了实现。 本书有几章专门介绍新的RL技术,包括分布式RL,模仿学习,逆RL和元RL。 您将学习如何利用OpenAI基准库的改进“稳定基准”轻
1
PyTorch项目模板由以下工具赞助; 请通过查看并注册免费试用来帮助支持我们 PyTorch项目模板 聪明地实施PyTorch项目。 PyTorch项目的可扩展模板,包括图像分割,对象分类,GAN和强化学习中的示例。 考虑到深度学习项目的性质,我们没有机会考虑项目结构或代码模块化。 在处理了不同的深度学习项目并面对文件组织和代码重复的问题之后,我们提出了一个模块化项目结构来容纳任何PyTorch项目。 我们还想为社区提供各种PyTorch模型的基础。 这是和之间的联合工作 目录: 为什么使用此模板? 我们正在为任何PyTorch项目提出一个基准,以帮助您快速入门,在此您将有时间专注于
2023-02-17 21:03:28 137KB machine-learning deep-learning pytorch dcgan
1
什么是Kam1n0 v2? Kam1n0 v2.x是可扩展的装配管理和分析平台。 它允许用户首先将(大型)二进制文件集合索引到不同的存储库中,并提供不同的分析服务,例如克隆搜索和分类。 通过使用Application的概念,它支持多租户访问和程序集存储库的管理。 应用程序实例包含其自己的专用存储库,并提供专门的分析服务。 考虑到反向工程任务的多功能性,Kam1n0 v2.x服务器当前提供三种不同类型的克隆搜索应用程序: Asm-Clone , Sym1n0和Asm2Vec以及基于Asm2Vec的可执行分类。 可以将新的应用程序类型进一步添加到平台。 用户可以创建多个应用程序实例。 可以在特定的用户组之间共享应用程序实例。 应用程序存储库的读写访问权限和开/关状态可以由应用程序所有者控制。 Kam1n0 v2.x服务器可以使用多个共享资源池同时为应用程序提供服务。 Kam1n0由和在加
1
文章研究了Q-learning算法,并且基于该算法,对煤矿井下机器人的移动路径进行了规划,并且对规划方案进行了仿真分析,通过研究发现Q-learning算法的路径规划能力优越,特别是对于条件极为恶劣、工况十分复杂的煤矿井下作业环境而言,能够较好地获取满意的规划结果。
2023-02-16 23:43:00 478KB Q-learning算法 机器人 路径规划
1
盆式PPO 关于沉思-PPO 这是Pensieve [1]的一个简单的TensorFlow实现。 详细地说,我们通过PPO而非A3C培训了Pensieve。 这是一个稳定的版本,已经准备好训练集和测试集,并且您可以轻松运行仓库:只需键入 python train.py 反而。 将每300个时代在测试集(来自HSDPA)上评估结果。 实验结果 我们报告了熵权重β,奖励和熵的训练曲线。 通过双簧管网络轨迹评估结果。 提示:橙色曲线:pensieve-ppo; 蓝色曲线:pensieve-a2c 预训练模型 此外,我们还在添加了预训练模型 与原始Pensieve模型相比,该模型的平均QoE提高了7.03%(0.924-> 0.989)。 如果您有任何疑问,请随时告诉我。 [1] Mao H,Netravali R,Alizadeh M.带自适应神经网络自适应视频流[C] // ACM数据
2023-02-16 13:49:26 2.71MB reinforcement-learning dqn pensieve ppo
1
Welcome to the Practitioner Bundle of Deep Learning for Computer Vision with Python! This volume is meant to be the next logical step in your deep learning for computer vision education after completing the Starter Bundle. At this point, you should have a strong understanding of the fundamentals of parameterized learning, neural net works, and Convolutional Neural Networks (CNNs). You should also feel relatively comfortable using the Keras library and the Python programming language to train your own custom deep learning networks. The purpose of the Practitioner Bundle is to build on your knowledge gained from the Starter Bundle and introduce more advanced algorithms, concepts, and tricks of the trade — these tech- niques will be covered in three distinct parts of the book. The first part will focus on methods that are used to boost your classification accuracy in one way or another. One way to increase your classification accuracy is to apply transfer learning methods such as fine-tuning or treating your network as a feature extractor. We’ll also explore ensemble methods (i.e., training multiple networks and combining the results) and how these methods can give you a nice classification boost with little extra effort. Regularization methods such as data augmentation are used to generate additional training data – in nearly all situations, data augmentation improves your model’s ability to generalize. More advanced optimization algorithms such as Adam [1], RMSprop [2], and others can also be used on some datasets to help you obtain lower loss. After we review these techniques, we’ll look at the optimal pathway to apply these methods to ensure you obtain the maximum amount of benefit with the least amount of effort.
2023-02-14 22:12:08 60.62MB deep learning
1