bert的PPT byJacob Devlin. bert的第一作者, Google AI大佬
2021-04-03 18:12:51 1.82MB bert NLP transformer 注意力机制
情绪分析 在 上通过微调 , 或训练的情感分析神经网络。 安装要求 pip install numpy pandas torch transformers 使用我在s3上载的模型分析您的输入 python analyze.py 火车模型 python train.py --model_name_or_path bert-base-uncased --output_dir my_model --num_eps 2 支持bert-base-uncase,albert-base-v2,distilbert-base-uncase和其他类似模型。 评估您训练的模型 python evaluate.py
2021-04-03 15:58:11 16.94MB nlp flask machine-learning vuejs
1
最近,自然语言处理领域的进步引发了adhoc搜索任务的复兴。特别是,大型上下文化语言建模技术,如BERT,已经为排序模型配备了比以前的单词袋(BoW)模型更深入的语言理解能力。将这些技术应用到新任务中是很棘手的,需要深度学习框架的知识,以及重要的脚本和数据分析。
2021-04-01 16:21:27 29.79MB ECIR 信息检索 BERT
1
learn_bert-main.zip
2021-04-01 09:02:39 23.75MB bert
1
具体使用方法可以看我的博客:https://blog.csdn.net/weixin_40015791/article/details/90410083 下面也会简单介绍一下:在bert开源代码中的run_classifier.py中找到 processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, "intentdetection":IntentDetectionProcessor, "emotion":EmotionProcessor, #新加上这一行 } 然后在该文件中增加一个class: class EmotionProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "fine_tuning_train_data.tsv")), "train") #此处的名字和文件夹中的训练集的名字要保持一致 def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "fine_tuning_val_data.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "fine_tuning_test_data.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1","2","3","4","5","6"] #七分类则从0到6 def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": label = "0" text_a = tokenization.convert_to_unicode(line[0]) else: label = tokenization.convert_to_unicode(line[0]) text_a = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples 最后直接调用即可,运行的命令如下: python run_classifier.py \ --task_name=emotion \ --do_train=true \ --do_eval=true \ --data_dir=data \ #把数据解压到同一级的文件夹中,此处是该文件夹名字data --vocab_file=chinese_L-12_H-768_A-12/vocab.txt \ #中文数据要微调的原始bert模型 --bert_config_file=chinese_L-12_
2021-03-31 14:02:01 599KB 中文情绪 bert 微调
1
英文BERT论文原汁预训练数据之一
2021-03-29 15:17:40 1.29GB BERT
1
英文BERT论文原汁预训练数据之一
2021-03-29 11:13:39 703.73MB BERT
1
kaggle真假新闻分类数据集
2021-03-27 20:34:05 34.6MB kaggle bert fake-news 数据集
1
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning
2021-03-26 20:20:50 472KB Python开发-自然语言处理
1
MovieLens1M基于深度学习的电影推荐系统 使用MovieLens1M数据集(数据可以从下载),实现自动编码器(AE),可变自动编码器(VAE),BERT提取电影名特征3种方法,对评分矩阵进行耦合,继而对用户做出推荐。 代码建议在Google Colab环境下运行,代码中的目录请根据自己的实际目录进行修改。 本代码主目录和子目录如下: / content / drive / Movie_lens / --------- ml-1m(包含数据集的文件夹) ---------自动编码器.ipynb ---------基于BERT的recommender.ipynb 1个型号: 1.1自动编码器 1.2可变自动编码器 1.3基于BERT 2实验结果: 2.1自动编码器的训练损失和验证损失的MSE 2.2变分自动编码器的训练损失和验证损失的MSE 2.3基于BERT的训练损失和测试损失的M
2021-03-25 01:32:20 6.57MB 系统开源
1