统一手势识别和指尖检测 同时用于手势识别和指尖检测的统一卷积神经网络(CNN)算法。 所提出的算法使用单个网络预测一次手指类别分类的概率和指尖位置输出以进行回归评估。 根据手指类别的概率,可以识别手势,并使用这两个信息对指尖进行定位。 我们没有直接从CNN的完全连接(FC)层中移出指尖位置,而是从完全卷积网络(FCN)中移出了指尖位置集合,然后采用集合平均来使最终的指尖位置输出回归。 更新 包括robust real-time hand detection using yolo进行的robust real-time hand detection using yolo在检测系统的第一阶段获得更好的平滑性能,并且大多数代码已经过清理和重组,以便于使用。 要获取以前的版本,请访问发布。 要求 TensorFlow-GPU == 1.15.0 凯拉斯== 2.2.4 ImgAug == 0.
2022-06-22 16:41:12 1.76MB solo cnn yolo gesture-recognition
1
用于mnist数据集识别,将minst数据集和算坏mnist数据集的结果进行对比。
2022-06-22 10:34:38 88KB 贝叶斯卷积神经网络
1
cnn_cats_dogs 使用 Caffe 对牛津宠物数据集的狗/猫图像进行分类 在 config.py 中设置路径
2022-06-20 14:17:26 67KB HTML
1
使用多种方法完成MNIST分类任务 Python 3.6 Pytorch 1.0 Scikit-learn 0.21 无需下载数据直接跑,代码自动下载 逻辑回归 Logistic Regression 多层感知机 MLP K近邻 KNN 支持向量机 SVM 卷积神经网络 CNN 循环神经网络 RNN
2022-06-19 17:05:18 1.04MB SVM CNN RNN KNN
1.领域:FPGA,多尺度CNN卷积神经网络的MRF图像分割算法 2.内容:【提供操作视频】基于多尺度CNN卷积神经网络的MRF图像分割算法matlab仿真 3.用处:用于多尺度CNN卷积神经网络的MRF图像分割算法编程学习 4.指向人群:本科,硕士,博士等教研使用 5.运行注意事项: 使用vivado2019.2或者更高版本测试,用软件打开FPGA工程,然后参考提供的操作录像视频跟着操作。 工程路径必须是英文,不能中文。
更新 更新22/01/2020您可能有兴趣关注以观看有关计算机视觉,机器学习,深度学习和机器人技术的每周视频。 Deepgaze 2.0的更新16/07/2019稳定版本可分支2.0 。 更新20/03/2019开始在Python / OpenCV 3.0上进行移植,请检查分支2.0以获取初步版本。 更新10/06/2017文章“使用卷积神经网络和自适应梯度方法在野外进行头部姿态估计”的PDF使用可在未来50天内免费下载 更新2017年4月6日,文章“使用卷积神经网络和自适应梯度方法在野外进行头部姿态估计”已在Pattern Recogntion(Elsevier)中接受发表。 Deepgaze CNN头部姿势估计器模块基于此工作。 更新31/05/2017新软件包。 该软件包包含用于显着性检测的算法的实现 更新22/03/2017修复了mask_analysis.py中的一个
2022-06-18 20:49:34 211.05MB motion-detection cnn particle-filter face-detection
1
卷积神经网络实现手写数字识别,包含手写数字二进制文件,代码分模块,有详细注释
2022-06-18 09:34:32 10.28MB python 卷积神经网络 手写数字识别
1
spec-img-finesse 在他们的工作Makantasis等。 (2015年)表明,使用CNN,高光谱图像可以成功分类。 CNN可以对像素的光谱和空间特征进行编码。 特征的从低到高层次结构极大地提高了分类性能。 在我们的CNN实施中,我们使用层修剪和层压缩方法扩展和优化了它们的方法。 每个植物在电磁频谱上都有其独特的频谱“特征”,可以使用高光谱传感器捕获该特征。 将图像中的高光谱带作为特征,将每个像素作为样本,利用卷积神经网络(CNN)和支持向量机(SVM)对植物进行分类。 CNN优化有助于防止过拟合,加速推理并减少其在内存,电池和计算能力方面的资源。 Keras 2.1.5与Tensorflow 1.7.0结合使用。 使用了印度松树数据集。 使用支持多项式的SVM可以达到83.9%的测试精度,而使用CNN可以达到99.2%的测试精度。 可以在项目报告“使用高光谱图像进行植
1
Training Issues & CNN Development
2022-06-14 19:09:01 338KB 深度学习
1
多尺度领域对抗多实例学习CNN(CVPR2020) 抽象的 我们提出了一种从组织病理学图像中对癌症亚型进行分类的新方法,该方法可以在给定的完整幻灯片图像(WSI)中自动检测肿瘤特有的特征。应当通过参考WSI对癌症亚型进行分类,即WSI,即整个病理组织玻片的大尺寸图像(通常为40,000x40,000像素),该图像由癌症和非癌症部分组成。一种困难来自与注解WSI中的肿瘤区域相关的高昂成本。此外,必须通过更改图像的放大倍率从WSI中提取全局和局部图像特征。此外,应针对医院/标本之间的染色条件差异,稳定地检测图像特征。在本文中,我们通过有效地结合多实例,领域对抗和多尺度学习框架,开发了一种基于CNN的癌症亚型分类新方法,以克服这些实际困难。 本文档说明了如何在ref [1]中将源代码用于多尺度域对抗多实例倾斜(MS-DA-MIL)CNN。该算法针对数字病理图像的二进制分类问题,其中每个载玻片被分
2022-06-13 22:45:43 1.43MB Python
1