自适应粒子优化是一种优化算法,它是粒子优化(Particle Swarm Optimization,PSO)的一种变体。与传统的PSO不同,APSO使用自适应策略来调整算法的参数,以提高算法的性能和收敛速度。 APSO的主要思想是根据体的收敛情况动态调整算法的参数。APSO的核心算法与PSO类似,由粒子的速度和位置更新规则组成。每个粒子通过与局部最优解和全局最优解比较来更新自己的位置和速度。 APSO的另一个关键之处是学习因子的自适应调整。在每个迭代中,APSO会计算每个粒子的适应度值。如果适应度值的方差较小,则学习因子的值会变小,以便更加收敛到最优解。相反,如果适应度值的方差较大,则学习因子的值会变大,以便更好地探索解空间。
2023-02-27 15:51:35 3KB pso 算法优化
1
​ 程序名称:基于多目标粒子算法的电力系统分布式电源选址定容 实现平台:matlab 简介:为更好地解决分布式电源选址定容问题,提出一种改进的多目标粒子算法。考虑投资成本、网损以及电压稳定性三因素建立了一个三目标的数学模型,并采用上述多目标粒子算法对模型求解。最后利用 IEEE-69节点系统仿真来验证所提算法在分布式电源选址定容方面的有效性。 具体细节可参考自动化与仪器仪表. 2021,(05)论文《基于多目标规划的分布式电源选址定容研究》 ​
2023-02-27 14:49:32 134KB matlab 多目标粒子群
1
matlab程序源码,可直接运行,并非完全复现《分布式光伏储能系统的优化配置方法》仅供学习交流。考虑分布式光伏储能系统的优化配置方法,采用双层模型求解 上层决策储能系统配置容量用遗传/粒子算法求解
2023-02-27 11:05:27 29KB 电力系统仿真
1
本文用cuda平台,用粗粒度写法将粒子写法并行化,每个线程对应一个粒子,用于解决0-1背包问题,该方法中对随机数可以进行进一步的优化。
2023-02-26 19:51:48 8KB 粒子群 GPU 0-1背包
1
、此验证是基于内存验证 非常稳定 支持多Q验证 使用者在电脑登录QQ即可自动识别 2、此软件支持无壳易语言软件和其他软件加验证 3、支持给软件加弹窗 网页 反调试 验证等功能 根据需求选择即可 4、二次验证是针对加密类型无壳易语言才使用有效 防止简单nop 5、加固是针对加密类型未知才有效 勾选加固只能针对易语言的软件
2023-02-24 22:45:52 12.04MB 电脑软件
1
基于粒子PSO优化算法的ELM网络,并对比优化后的EML的预测性能+含代码操作演示视频 运行注意事项:使用matlab2021a或者更高版本测试,运行里面的Runme.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体可观看提供的操作录像视频跟着操作。
2023-02-23 17:14:29 994KB 算法 网络 PSO优化 ELM网络
擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2023-02-23 15:42:48 793KB matlab
1
传统的PID控制对于控制模型不确定并具有非线性特性的对象时,存在参数难以整定、控制效果不好的缺点,文中提出了一种基于蚁算法的PID调节算法,即利用蚁算法动态调节PID的参数,实现对配料系统的控制,通过实验仿真的方式证明了该方法具有良好的控制效果及适应性。
2023-02-23 08:53:55 703KB 蚁群算法 PID控制 精度 配料系统
1
数据治理与咨询共享文件(勿外传).zip
2023-02-20 17:11:48 264.71MB
1
针对煤矿回采工作面瓦斯涌出的非线性特征,提出一种基于改进量子粒子优化BP神经网络(IQPSO-BP)的瓦斯涌出量预测方法。鉴于量子粒子算法的遍历能力有限,采用混沌序列来初始化量子的初始角位置。同时,采用凸函数调整惯性权重,以平衡算法的全局勘探和局部开发能力。并依此来优化BP神经网络的权值、阈值参数,进而建立了瓦斯涌出量预测模型。试验结果表明,IQPSO-BP算法具有较强的泛化能力及较高的预测精度,可有效用于煤矿瓦斯涌出量的预测。
1