回归参数估计 使用不同方法的回归模型中参数估计的R代码: 最小二乘 梯度下降 大都会-哈丁斯 使用JAGS进行吉布斯采样 该代码用于具有一个预测变量的线性回归问题(单变量回归)。 目的是通过一个简单的示例并为所有方法提供基本实现,以介绍机器学习中广泛使用的重要方面,例如梯度下降和蒙特卡洛方法。 此博客文章中介绍了不同的方法和代码: :
2022-11-06 10:15:57 3.95MB R
1
使用高阶累积量对MPSK信号进行调制识别,数值分析的EULER法,包括广义互相关函数GCC时延估计,感应双馈发电机系统的仿真,实现典型相关分析,线性调频脉冲压缩的Matlab程序,包含光伏电池模块、MPPT模块、BOOST模块、逆变模块。
1
13.1 极大似然估计的原理 极大似然的估计原理可以由下面的程序得到说明。我们首先生成 10 个服从 正态分布的总体,每个总体的均值都不同,依次为 0,1,2,3,4,5,6,7,8, 9。方差相同,均为 1。然后我们随机地取出一个总体,从中抽出 10 个样本,因 为事先不知道是从哪一个总体中抽出来的,所以我们分别用已知的 10 个总体参 数值代入似然函数,计算出 10 个似然函数值,取其中 大的似然值,认为该样 本是从相应的总体中取出的(从而联合概率密度也 大化)。然后我们让计算机 告诉我们它是从第几个总体中取样的,并与我们的判断进行对比。 *===========================begin================================== capt prog drop mle prog mle /*生成10个均值不同、方差均为1的正态总体,每个总体取8个样本*/ drawnorm double x0-x9,n(8) m(0,1,2,3,4,5,6,7,8,9) clear global i=int(10*uniform()) //设定一个随机数,用于随机取出一个总体 forv j=0/9 { gen lnf`j' =-0.5*ln(2*_pi)*8-sum(0.5*(x$i-`j')^2) //对取出的总体计算似然值 scalar lnf`j'=lnf`j'[_N] //最终的似然值 } scalar list // 比较10个似然值哪个最大,猜想是从第几个总体取出来的? end mle *根据10个似然值,猜想是从第几个总体取出来的? di "所抽中的样本为" as error "X"$i //显示真正的取样总体是什么 *===========================end==================================== 在现实中,我们并不知道任何一个真正的总体参数,因此,只能借助于找到 样本似然值(实际上是联合概率密度的对数值) 大的总体参数,即认为其是总 体参数。在 STATA 中实现 大似然法的估计必须自己编写程序。下面的例子说 明了如何利用 stata 编写程序来实现对模型的极大似然估计。 13.2 正态总体均值和方差的极大似然估计 *===========================begin================================== capt prog drop bb prog bb //定义程序的名称 args lnf u v //声明参数,u 为均值,v为方差 quietly replace `lnf' = -0.5*ln(2*_pi) - ln(`v') -0.5*($ML_y1-`u')^2/(`v')^2 end drawnorm x,n(100) m(10) sd(3) clear//模拟均值为10,方差为3的100个正态样本 ml model lf bb (x=) (variance:) //利用迭代法则进行极大似然估计
2022-11-05 22:27:01 2.41MB stata
1
本代码是用DOA矩阵法进行DOA估计的matlab仿真
2022-11-05 21:18:32 1KB doa doa_matrix doa_矩阵 doa估计
1
EM(expectation-maximization)算法是Dempster,Laird和Rubin(DLR)三个人在1977年正式提出的.主要是用于在不完全数据的情况下计算最大似然估计。ppt中包含以下内容: 算法介绍 EM算法 GEM算法性质 EM算法解释 EM不足及改进 作者:尤全增 ultimateyou@gmail.com
2022-11-05 20:58:12 520KB 模型参数估计
1
如何在有限的屏幕空间呈递层次规模尽可能大的树并保持其清晰的层次结构以避免认知困难问题一直是树可视化研究的主要问题之一。提出的改进的空间优化的树方法采用更合理的子树空间划分,进一步提高空间利用率,通过改变边缘结点定位方式进一步降低了原方法中因其分布不规则性而造成的认知负担问题。
2022-11-05 13:20:51 494KB 论文研究
1
基于最小均方误差(MMSE)准则提出一种宽带信号波达方向(DOA)估计算法。将宽带信号通过窄带滤波器组转化为窄带信号,采用自回归迭代方法恢复窄带信号的稀疏表示,根据稀疏表示得到信号源个数和DOA估计。该算法不仅有超分辨率能力,而且不必预先知道信号源个数。此外,本算法能对相干信号源进行DOA估计而不需要解相关预处理。仿真结果验证了该算法的有效性。
2022-11-05 12:50:20 456KB 自回归迭代
1
YOLOv7是YOLO家族中第一个包含人体姿态估计模型的。
2022-11-04 16:05:25 12.14MB Yolov7 人体姿态估计