Agile Data Warehouse Design From Business Models to BI Models
2023-01-30 11:17:56 8.29MB java
1
db_data_process
2023-01-28 17:18:34 12KB Scala
1
我们特别关注以下三个方面:(1)全面回顾了近年来在探索知识迁移的力量方面取得的进展,特别是在元学习方面;(2)介绍了将人类/专家知识纳入机器学习模型的前沿技术;(3)确定了开放的挑战数据增强技术,如生成性对抗网络。
2023-01-28 00:52:50 31.49MB 小数据学习
1
Python Data Science Handbook[美]Jake VanderPlas【高清版】,PDF
2023-01-22 21:53:45 18.44MB python 数据分析 数据科学 数据处理
1
BigDL:基于Apache Spark的分布式深度学习 什么是BigDL? 是Apache Spark的分布式深度学习库; 借助BigDL,用户可以将其深度学习应用程序编写为标准Spark程序,这些程序可以直接在现有Spark或Hadoop集群之上运行。 为了轻松构建Spark和BigDL应用程序,提供了一个高级 ,用于端到端分析+ AI管道。 丰富的深度学习支持。 以为模型,BigDL为深度学习提供了全面的支持,包括数值计算(通过 )和高级; 此外,用户可以使用BigDL将预先训练的或模型加载到Spark程序中。 极高的性能。 为了实现高性能,BigDL在每个Spark任务中使用 /
2023-01-19 12:14:04 11.13MB python scala big-data ai
1
开发操作Oracle数据库的WebService时,会出现未能加载 System.Data.OracleClient.dll的错误,本文详细叙述了解决办法。
2023-01-19 11:03:24 431B dll未能加载
1
MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面来介绍一下. MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分: Training set images: train-images-idx3-ubyte.gz (9.9 MB, 解压后 47 MB, 包含 60,000 个样本) Training set labels: train-labels-idx1-ubyte.gz (29 KB, 解压后 60 KB, 包含 60,000 个标签) Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 解压后 7.8 MB, 包含 10,000 个样本) Test set labels: t10k-labels-idx1-ubyte.gz (5KB, 解压后 10 KB, 包含 10,000 个标签) MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.
2023-01-19 11:03:17 11.06MB MNIST TENSORFLOW 机器学习
1
S1 data forwarding测试方法总结
2023-01-18 10:45:50 769KB S1 data forwardi
1
Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords?, In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications., Peer under the hood of the systems you already use, and learn how to use and operate them more effectively, Make informed decisions by identifying the strengths and weaknesses of different tools, Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity, Understand the distributed systems research upon which modern databases are built, Peek behind the scenes of major online services, and learn from their architectures
2023-01-14 00:48:58 23.82MB database programming
1
In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications.
2023-01-14 00:44:44 15.76MB 大数据 分布式 架构设计 系统设计
1