使用pytorch搭建的简单的LSTM多变量多输出时间序列预测的使用例。 生成了多个以sinx、cosx、tanx构成的序列,使用[i:i+50]的数据预测[i+51]的数据。x是步长为0.1的等差数列 作者初学时用来当说明文档使用,程序适合初学者捣鼓,注释写的很详细了
2022-07-29 09:07:53 3KB LSTM Python pytorch deep
1
时间序列在宏观经济领域普遍存在, 对小时间序列的分类预测也有着广泛的需求.由于小时间序列 蕴含的信息不充分, 有效地提高小时间序列分类预测的可靠性非常困难, 目前也缺少这方面的研究.针对这种情况, 在基于引入平滑 参数的高斯核函数估计属性边缘密度的基础上, 建立用于小时间序列分类预测的动态朴素贝叶斯分类器, 并给出平滑参数的同步和异步优化方法.实验 结果表明, 优化能够显著提高小时间序列分类预测的准确性.
1
自己写的时间序列线性分割,可以用来做数据压缩,可以运行,没有错误。
2022-07-21 17:32:03 2KB 自下向上 时间序列 线性分割
1
使用matlab编程语言,实现dtw算法,已经经过测试。
2022-07-15 19:11:58 870B dtw matlab 数据挖掘 时间序列
1
数据挖掘 LSTM 时间序列预测 随机森林 基于LSTM的股票数据分析 数学建模 探究股票各指标的相关性、建立模型 建立LSTM时间序列模型
2022-07-14 20:06:31 1.48MB 数学建模
模型时间集合 使用Modeltime进行时间序列预测的集成算法 一个modeltime扩展,它实现了集成预测方法,包括模型平均,加权平均和堆栈。 安装 安装CRAN版本: install.packages( " modeltime.ensemble " ) 或者,安装开发版本: remotes :: install_github( " business-science/modeltime.ensemble " ) 入门 :了解使用Modeltime进行预测的基础知识。 :了解Modeltime集成模型的预测基础。 在几分钟内使您的第一支乐团 加载以下库。 library( tidymodels ) library( modeltime ) library( modeltime.ensemble ) library( tidyverse ) library( timetk ) 第
2022-07-14 15:30:31 3.96MB time timeseries time-series forecast
1
时间序列特征提取与聚类算法研究.pdf
2022-07-11 19:12:39 2.08MB 文档资料
邓自立——现代时间序列分析及其应用 建模、滤波、去卷、预报和控制
2022-07-11 16:51:12 10.94MB 时间序列分析
1
特色 根据时间序列数据计算各种特征。 R包Python实现。 安装 您可以使用以下tsfeatures从安装tsfeatures的发行版本: pip install tsfeatures 用法 tsfeatures主函数默认情况下计算Montero-Manso,Talagala,Hyndman和Athanasopoulos在。 from tsfeatures import tsfeatures 该函数接收具有unique_id , ds , y列以及可选的数据频率的面板熊猫df。 tsfeatures ( panel , freq = 7 ) 默认情况下( freq=None ),该函数将尝试推断每个时间序列的频率(使用ds列上pandas infer_freq )并根据内置字典FREQS分配一个季节性周期: FREQS = { 'H' : 24 , 'D' : 1 ,
2022-07-11 10:53:11 77KB python errors time-series metrics
1