很好用的一款曲线拟合 插值小工具 界面简洁 操作方便
2020-02-16 03:05:41 1.94MB 曲线拟合 软件工具 方便 好用
1
最小二乘法曲线拟合C语言可执行代码
2020-01-08 03:11:52 592KB 曲线拟合
1
这个软件是一个非常强大的根据数值找出其中数学规律的工具。对于给定的一组数据(x,y),它可以用上百种模型(函数公式)去匹配,找出其中误差最小的几个供你挑选,也可以自定义函数拟合。
2020-01-04 03:14:54 1018KB 曲线 拟合
1
ct. 18, 1995 v. 1.00 =========================================================================== + First release of CurveExpert 1.0. Oct. 26, 1995, v. 1.01 =========================================================================== New Features: + More attractive help file, with more keywords for searching + new help search facility available directly from CurveExpert Bug Fixes: + If a polynomial was already calculated, selecting another polynomial of a differing degree incorrectly pulled results from the cache instead of recalculating the curve fit. Fixed. + running two versions of CurveExpert is prevented, since two simultaneous instances cause stack faults. + if the data set is sorted, all interpolations are now marked invalid as they should be. + "Apply to All" did not necessarily force the current attributes of a graph to the current graph (only if the user clicks OK). Fixed. + The scrollbar did not get reset to the top when the user read in a new data file. Fixed. + The structure of the code has been undergone some major changes to ease porting to Windows 95 and Windows NT. I was exceedingly careful, but I hope this didn't introduce new bugs! :-) + For some reason, the help file didn't have any single or double quotes in it. This has been corrected, so it is now easier to read. + The help file was not terminated when CurveExpert was. Fixed. + The Window and Help menus were moved to more conventional positions on the menu bar. Nov. 4, 1995, v. 1.10: =========================================================================== New Features: + Previously undocumented logical functions can be used in the user-defined models. See the help documentation. + Current filename now appears in the title bar. + QuickCalc has been expanded to find the x-value, given the y-value. + Optimizations have
2020-01-03 11:41:26 448KB 另类软件
1
函数逼近与曲线拟合,拟合的结果与拉格朗日插值及样条插值的结果比较 复化梯形方法;2.复化辛甫森方法;3.复化高斯方法,求解第二类Fredholm积分方程 高维积分数值计算的蒙特卡罗方法,分别用积分和测度两种不同角度,通过蒙特卡罗方法求冰激凌的体积 病态的线性方程组的求解,选择病态问题的维数为6,分别用Gauss消去法、J迭代法、GS迭代法和SOR迭代法求解方程组,及其比较
1
MATLAB曲线拟合代码 只要改变代码中ui uo内值,便可进行所需拟合,拟合后可通过workspace查看直线参数
2019-12-25 11:11:42 296B MATLAB 曲线拟合 代码
1
已知插值点,反求控制点来拟合NURBS拟合。interpolate是Nurbs曲线拟合,conn_interpolate实现曲线顺接还未完成,程序主体是CSDN下载b样条拟合,在些基础修改和完美。(无分确需要的可电邮:zglore#163.com)
2019-12-21 22:17:45 1.58MB Nurbs曲线拟合 反算控制点 VS2005
1
本文基于传统的传染病模型,以微分方程的方法作为理论基础,结合采取的措施不同的情况,用MATLAB软件拟合出患者人数与时间的曲线关系,从中得出应采取的相应的应对措施。 在考虑地区总人数不变,人群被分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,再将这几类分为可传染性和不可传染性两种。我们找出单位时间内正常人数的变化、单位时间内潜伏期病人数的变化、单位时间内确诊患者人数的变化、单位时间内退出的人数的变化、单位时间内疑似患者人数的变化等关系建立微分方程模型,得到病毒扩散与传播的控制模型。 在此基础上,我们将所要求的问题带入模型得到患者人数随时间变化的曲线图,根据这图形得出模型结果的变化。这样一来就可根据这结果的变化得出相应的应对措施。 此外对该传染病的潜伏期及治愈期进行了灵敏度分析,发现潜伏期的变化会对整个模型的结果产生较大影响,而治愈期的变化只会使传染病的持续时间缩短,但对累积的患病人数影响不大。 应尽量避免患者与正常人接触,减少正常人患病的可能性;加大隔离措施强度;减少拖延患者去住院的时间,让患者及时住院治疗。养成良好的卫生习惯,保证科学睡眠,适当锻炼,减少压力,保证营养,增强个人抵抗力,降低被病毒感染的危险。
1
一阶惯性加延迟环节的matlab曲线拟合,利用最小二乘法原理
2019-12-21 22:11:44 2KB MATLAB 最小二乘
1
很好用的洛伦兹曲线拟合的源代码,已经验证可以完全调通
2019-12-21 21:58:16 3KB 洛伦兹 曲线 拟合
1