为改善虹膜定位的效果,提出一种改进的基于Hough变换的虹膜定位算法。首先,用一个全1的矩形窗对瞳孔中心进行估计;然后,以该估计中心为极点对虹膜二值图像进行极坐标变换,通过水平边缘点选择规则剔除非水平边缘点,再将图像变换到直角坐标;最后,利用Hough变换以及虹膜内、外边界之间存在的耦合关系来求取虹膜边界参数,并取最大和次大参数的均值作为最终的边界参数。实验结果表明,该算法平均定位时间为0.152 s,准确率高达98.4%。
2022-12-09 12:13:43 487KB 软件
1
用于Node.JS的USB库用于与JavaScript / CoffeeScript中的USB设备进行通信的Node.JS库。 这是Christopher Klein的node-usb的重构/重写。 该API不兼容(希望您找到它是Node.JS的USB USB库,用于与JavaScript / CoffeeScript中的USB设备进行通信的Node.JS库。这是Christopher Klein的node-usb的重构/重写。该API不兼容(希望您会发现它有所改进。)它完全基于libusb的异步API以提高效率,并提供用于连续流传输数据或事件的流API。安装Libusb作为子模块提供。在Linux上,您需要libudev进行构建libusb。在Ubuntu / Debian上:sudo a
2022-12-08 13:40:01 51KB Node.js Hardware
1
理论部分见这里:https://blog.csdn.net/fengzhuqiaoqiu/article/details/128225117 笔者改造了wden、thselect和wthresh三个函数文件,并进一步封装成filterWaveletTh函数,延续本专栏中以往代码的风格,实现“一行代码”完成小波阈值去噪的效果。当然啦,这里所说的“一行代码”还需要配合一些参数的设置。
1
虽然无先导卡尔曼UKF滤波技术在性能上要优于一阶线性化的扩展卡尔曼滤波EKF技术, 但是对于改进型Logistic混沌映射的扩频通信系统, UKF运算时间长, 算法复杂。针对上述缺点以及改进型Logistic映射的泰勒展开式最高项为二阶的特点, 提出将二阶EKF运用到接收系统中, 该接收系统能精确到泰勒展开式的二阶, 达到与UKF相同的性能。相比UKF的复杂算法更加简单, 运算速度也更快。仿真实验表明, 虽然二阶EKF与UKF的误码率相同, 但在运算速度与复杂度方面均优于UKF。
1
针对传统的模糊C-均值聚类算法对初始聚类中心较敏感、易陷入局部最优的缺点,将粒子群优化算法和FCM算法相结合,提出一种改进的模糊聚类算法。该算法利用粒子群算法的全局搜索能力代替FCM算法寻找初始聚类中心,使其跳出局部最优,实现模糊聚类。主要从反映数据集分类的类内紧致性程度和类间分离性程度的角度考虑,重新设计适应度函数。实验结果表明,提出的算法在聚类正确率和有效性指标上有更好的效果。
1
基于改进U-Net网络的内窥镜图像烟雾净化算法-林金朝
2022-12-07 15:02:49 5.58MB 内窥镜图像烟雾净化算法
1
基于改进SSD算法(SE+特征融合)的苹果叶病虫害识别系统源码(pytorch框架)+改进前源码+病害数据集+项目说明.zip 主要改进点如下: 1、替换backbone为Resnet/MobileNet 2、添加一种更加轻量高效的特征融合方式 feature fusion module 3、添加注意力机制 (Squeeze-and-Excitation Module 和 Convolutional Block Attention Module) 4、添加一种解决正负样本不平衡的损失函数Focal Loss 附有苹果叶病害数据集,可训练模型
2022-12-07 12:27:48 90.31MB SSD 算法改进 注意力机制 SE模块
改进yolov5(多检测头+注意力机制+repvgg结构)pytorch源码+项目说明.zip 集成yolov5(v6.0), 注意力机制, 和repvgg结构 添加了多头检测代码,使用train_multiple_detection_head.py文件进行训练 添加了检测+关键点代码,使用train_key_point.py文件进行训练
深度学习算法改进(GAM注意力_STN模块_SE模块_ODConv动态卷积_FAN注意力模块实现源码+各改进说明) 1、引入了3D-permutation 与多层感知器的通道注意力和卷积空间注意力子模块 2、入了一个新的可学习模块--空间变换器,它明确地允许在网络中对数据进行空间操作。 3、重新校准通道特征反应来适应性地调整 通过明确地模拟通道之间的相互依存关系,自适应地重新校准通道的特征响应。 4、全维动态卷积(ODConv),一种更通用但更优雅的动态卷积设计 5、完全注意网络(FAN) ,它们通过结合注意通道处理设计来加强这种能力 该源码适合有一定深度学习算法基础的工程师下载学习借鉴!
2022-12-07 12:27:45 21.87MB GAM注意力 SE模块 STN模块 动态卷积
多目标粒子群算法的原理以及matlab代码实现,参考文献《基于改进多目标粒子群算法的配电网储能选址定容》。 代码注释清晰,结构有条理,非常适合用来学习多目标优化。 程序包括多目标粒子群算法的主函数与四个多目标优化常用的测试函数,代码运行有任何问题都可以帮忙解决,文档中提供了完整代码的获取方式。
2022-12-06 15:14:39 11KB 多目标优化 粒子群算法
1