改进的基于SVM决策树的多分类算法,刘靖雯,王小捷,标准的SVM是针对两类的分类问题,如何将两类问题推广到多类问题上,是目前研究的一个热点。本文提出了一种改进的基于SVM决策树的多
1
糖尿病预测:使用Cima决策树算法和K-最近模型,根据患者的实验室测试结果变量(例如葡萄糖,血压等​​),使用Pima Indians糖尿病数据集来预测患者是否患有糖尿病。 Python-Scikit学习,SciPy,熊猫,MatPlotLib
2021-12-16 17:10:02 1.87MB python data analytics scikit-learn
1
有关机器 学习的基本介绍,比如机器学习是分为监督学习和无监督学习的,以及监督学习中的一些算法,有分类算法和数值型预测算法,分类算法中几种比较经典的算法
1
ID3算法的大致实现,同学们可以作为参考
2021-12-16 10:20:39 10KB ID3、决策树
1
清华大学大数据机器学习课程PPT,决策树与随即森林部分
2021-12-16 09:03:37 1.53MB 机器学习
1
北邮人工智能实训决策树代码,python实现,可完美运行
2021-12-15 17:10:32 56KB 北邮人工智能实训 决策树 python
《机器学习》算法实例-决策树算法-预测鱼类和非鱼类实例 根据不浮出水面是否可以生存、是否有脚蹼2 个特征,将动物分成两类: 鱼类和非鱼类。 收集数据: 可以使用任何方法 准备数据: 树构造算法(这里使用的是ID3算法,因此数值型数据必须离散化。) 分析数据: 可以使用任何方法,构造树完成之后,我们可以将树画出来。 训练算法: 构造树结构 测试算法: 使用习得的决策树执行分类 使用算法: 此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义
2021-12-15 17:10:28 2.96MB 机器学习 决策树 算法
1
《机器学习》算法实例-决策树算法-预测隐形眼睛类型 包括数据集都有提供,主要用于预测隐形眼镜(数据特征为年龄、症状、眼泪数量、是否散光;标签为硬材质、软材质、不适合带隐形眼镜),有测试结果 【注】本实例对于每步都有详细讲解,若有不理解部分,可私信解答。
2021-12-15 17:10:27 3.01MB 机器学习 决策树
1
需要更多资源请关注。 Github: https://github.com/huangyueranbbc
2021-12-14 14:16:14 1.66MB 机器学习 深度学习 大数据 决策树
1
a) 您如何实现初始树(A 部分)以及为什么选择您的方法? 为了实现决策树,我们使用了 ID3(迭代二分法 3)启发式。 训练阶段 - 构建决策树: 在 ID3 算法中,我们以原始属性集作为根节点开始。 在算法的每次迭代中,我们遍历剩余集合中每个未使用的属性并计算该属性的熵(或信息增益)。 然后,我们选择具有最小熵(或最大信息增益)值的属性。 然后剩余的属性集被选定的属性分割以生成数据的子集。 该算法继续在每个子集上递归,只考虑以前从未选择过的属性。 测试阶段:在运行时,我们将使用经过训练的决策树对新的未见过的测试用例进行分类,方法是使用此测试用例的值向下处理决策树,以到达告诉我们此测试用例属于哪个类的终端节点。 我选择这种方法是因为以下原因: 它通过选择最佳属性来在每次迭代中拆分数据集,从而使用贪婪方法。 在离散数据上运行非常快(在 3 到 4 分钟内运行)。 但是,
2021-12-14 10:41:15 593KB Python
1