支持向量机 (SVM) 是许多分类问题的有效模型。 然而,SVM 需要二次规划的解决方案,需要专门的代码。 此外,SVM 有很多参数,影响了 SVM 分类器的性能。 最近,提出了广义特征值近端 SVM(GEPSVM)来解决 SVM 的复杂性。 在现实世界的应用程序中,数据可能会受到错误或噪声的影响,处理这些数据是一个具有挑战性的问题。 在本文中,已经提出了一种方法来克服这个问题。 这种方法称为 DSA-GEPSVM。 主要改进基于以下几点:1)线性情况下的新模糊值。 2) 非线性情况下的新核函数。 3) 差分搜索算法 (DSA) 被重新制定以找到 GEPSVM 参数及其内核参数的接近最优值。 实验结果表明,所提出的方法能够找到合适的参数值,并且与其他一些算法相比具有更高的分类精度。
2022-09-30 18:25:48 952KB Support Vector Machines
1
支持向量机导论(中文)版,适合对SVM感兴趣的科研人员和学生
2022-09-30 16:40:16 5.25MB SVM
1
林智仁的libSVM工具和详细的使用方法,包括:初识LibSVM、第一次体验libSvm、LibSVM使用规范、easy.py和grid.py的使用 、svmtrain()函数的用法、 svmpredict()函数的用法
2022-09-30 08:54:41 927KB libSVM 林智仁 支持向量机
1
2002,Jun’ichi Kazama,Takaki Makino等人使用支持向量机(SVM)在生物医学命名实体识别中,结果表明多项式核函数的SVM系统优于基于ME的系统。
2022-09-29 17:05:04 78KB 深度学习 生物医学
1
【SVM预测】基于松鼠算法优化支持向量机SVM实现数据预测附matlab代码
2022-09-28 15:13:32 1.04MB
1
向量自回归模型(VAR)学习代码
2022-09-28 13:05:25 7KB 时序模型 机器学习 python
1
计算给定向量或矩阵的伴随矩阵。 此函数取代了仅接受向量作为输入的 MATLAB compan.m 函数。
2022-09-27 16:54:57 987B matlab
1
提出在支持向量机回归预测中采用粒子群算法优化参数和主成分析降维的方法,通过算例分析表明,此法能够显著提高预测的精度。
2022-09-27 16:52:49 404KB 支持向量机
1
机器学习基本数学知识-协方差矩阵\特征值\特征向量
1
为改善传统聚类算法在电力时序数据上的聚类效果,提出一种基于优化特征向量选取的遗传谱聚类算法。针对应用数据结构特点,合理优化谱聚类算法中特征向量的提取过程,避免传统方法可能造成的数据信息缺失问题;采用遗传聚类优化算法对优选后的特征向量进行聚类划分,并将最终划分结果映射回原始数据。以UCI标准合成时间序列数据与美国区域电网运营商PJM提供的日负荷数据为例,对比分析现有常用聚类算法与所提算法测试结果的聚类有效性指标与形态特征。研究结果表明,所提算法分类效果显著,有较高的聚类质量和算法稳健性,具有工程应用前景。
1