IET.RFID.Protocol.Design.Optimization.and.Security.for.the.Internet.of.Things
2021-11-30 10:36:14 9.21MB RFID
1
工程优化中的元启发式和进化算法,元启发式算法是独立于问题的算法,一般起源于自然观测,常见有遗传算法,粒子群优化等,本书对于目前性能最好的一系列算法基本进行介绍。
1
Specifically, this book deals in depth with the following issues: • A methodology for simultaneous non-zero clock skew scheduling and design of the topology of the clock distribution network. This methodology is based on the pioneering works of Friedman [1] and Fishburn [2], and builds on Linear Programming (LP) solution techniques. The non-zero clock skew scheduling of circuits with level-sensitive latches and for multi-phase clock signals is formulated as a LP problem. The simultaneous clock scheduling and clock tree topology synthesis problem is formulated as a mixed-integer linear programming problem that can be solved efficiently. The proposed algorithms have been evaluated on a variety of benchmark and industrial circuits and synchronous performance improvements of well above 60% have been demonstrated. • For those cases where reliable circuit operation and production yield are the highest level priorities, an alternative problem formulation is developed. This formulation is based on a quadratic (hence the QP—quadratic programming) measure, or cost function, of the tolerance of a clock schedule to parameter variations. A mathematical framework is presented for solving the constrained and bounded QP problem. A constrained version of the problem is iteratively solved using the Lagrange multipliers method. As these research issues are topics of great practical importance for input/output (I/O) interfacing and Intellectual Property (IP) blocks, explicit clock delay and skew requirements are fully integrated into the mathematical model described here. The theoretical derivation of the limits on the improvements on the clock period available through clock skew scheduling. The theoretical derivation is performed by identifying the limits for three local data path topologies. A methodology to mitigate the limitation of clock skew scheduling for a reconvergent path system is presented. The methodology involves delay insertion on some data paths of the reconvergent syst
2021-11-29 15:41:33 3.42MB Timing
1
经典的convex optimization书+课件资料,值得收藏,是学习优化的入门资料之一。
2021-11-29 10:05:02 6.91MB optimization
1
BOML-用于元学习的Python双层优化库 BOML是一个模块化的优化库,它将几种ML算法统一为一个通用的双层优化框架。它提供了用于实现流行的双层优化算法的接口,因此您可以快速构建自己的元学习神经网络并测试其性能。 ReadMe.md包含简短介绍,以在少数镜头分类字段中实现基于元初始化和基于元功能的方法。除已提出的算法外,还可以使用较低级别策略和较高级别策略的各种组合。 元学习 当通过学习具有良好泛化能力的初始化来面对传入的新任务时,元学习效果很好。它甚至在提供少量培训数据的情况下也具有良好的性能,从而催生了针对不同应用的各种解决方案,例如少发性学习问题。 我们提出了一个通用的双层优化范例,以统一不同类型的元学习方法,其数学形式可以总结如下: 通用优化例程 在这里,我们在图中说明了一般的优化过程和分层构建的策略,可以在以下示例中快速实现它们。 文献资料 有关基本功能和构建过程的更多详
1
IE598NH-lecture-21-Wasserstein Distributionally Robust Optimization.pdfIE598NH-lecture-21-Wasserstein Distributionally Robust Optimization.pdf
2021-11-29 00:56:20 382KB robust
1
二维遗传算法matlab代码 multi-objective-optimization-NSGA2 multi-objective optimization NSGA2 A_SGA_QGA_master_0610 A_SGA_TSP A_SGA_with_quantum_0620文件夹 (5)QGA.py 原始的量子遗传算法; (6)QGA_numpy.py 经Numpy改造的量子遗传算法; (7)QGA_numpy_elite.py 经Numpy改造,并加入elite机制的量子遗传算法; (8)QGA_numpy_elite_comprason.py 经Numpy改造,并加入elite机制的量子遗传算法与普通遗传算法的对比; B_MOO_MOEAD0709 参考代码; B_MOO_NSGA2_0710 这是晓风提供的代码,根据MoeaPlat的MATLAB代码改写的Python,这个代码存在问题是运行效率慢。 B_MOO_NSGA2_0817未完成改造 无效代码 B_MOO_NSGA3_0810_PS PS-MOOPS-SL求解,行路径规划,初始化等相关的代码; 基于老的数据结构的方
2021-11-28 17:53:44 84.4MB 系统开源
1
资源分配选择 使用Python中的混合整数线性规划解决资源分配问题
2021-11-28 11:48:06 4.7MB optimization python3 milp Python
1
帕格莫 重要提示:pygmo(用于pagmo的Python绑定)已拆分成一个单独的项目,托管。 请更新您的书签! pagmo是用于大规模并行优化的C ++科学库。 它基于以下思想:为优化算法和优化问题提供统一的接口,并使它们在大规模并行环境中的部署变得容易。 如果您将pagmo用作研究,教学或其他活动的一部分,如果您可以对存储库加注星标和/或引用我们的工作,我们将不胜感激。 出于引用目的,您可以使用以下BibTex条目,该条目引用《开源软件杂志》中的: @article { Biscani2020 , doi = { 10.21105/joss.02338 } , url = { https://doi.org/10.21105/joss.02338 } , year = { 2020 } , publisher = { The Open Journal } ,
1
乳腺 MRI 图像中的肿瘤分割。 我在这个项目中使用了 RIDER 数据库。 用于图像分割的三种基于聚类的算法: 1- 模糊 c 均值 (FCM) 2-k-均值3-通过布谷鸟搜索优化(CSO)算法优化k-means
2021-11-25 09:15:51 2.08MB matlab
1