WCH-LinkW是基于沁恒的RISC-V架构MCU的蓝牙芯片CH32V208GBU6设计的一款无线DAP下载仿真调试器 + 无线串口通信工具。通过蓝牙功能实现主\从机通信的物理隔离,可以无线下载仿真调试ARM和RISC-V架构MCU和无线串口通信。该模块主机可以使用U盘外壳保护、从机也不用拖着数据线或者Type-A接口去下载仿真调试、解决开发过程桌面线束杂乱等问题。 本模块有以下特点: Ⅰ、可以无线下载仿真调试ARM和RISC-V架构MCU程序,下载速度>=20KB/s Ⅱ、具有无线串口RX、TX接口,波特率最高921600 Ⅲ、下载工具支持MounRiver Studio、WCH-LinkUtility、Keil V5.25以上 Ⅳ、无需额外烧录器可USB下载程序 Ⅴ、板载天线尺寸小巧可方便随身携带 Ⅵ、WCH-LinkW分主从机模式 从机方案也可以嵌入到自己PCB设计中,应用在开发板中,下载调试程序时仅需要上电开发板,再在电脑端插入U盘一样的主机即可下载调试程序和无线串口调试,而不用拖着杜邦线和数据线;
2024-11-28 15:40:10 4.04MB arm risc-v
1
单片机,又称单片微控制器,并非仅完成某一逻辑功能的芯片,而是将整个计算机系统集成到一个芯片上。其相当于一个微型计算机,与标准计算机相比,单片机仅缺少I/O设备。简而言之,一块芯片即构成了一台计算机。单片机具有体积小、质量轻、价格便宜的特点,为学习、应用和开发提供了便利条件。学习使用单片机是了解计算机原理与结构的最佳选择。 单片机的使用领域十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。一旦产品用上了单片机,就能实现产品的升级换代,使产品具有更高的智能化水平,常在产品名称前冠以“智能型”形容词,如智能型洗衣机等。此外,单片机在国防、电子玩具、厨房和家居设备等领域也有广泛的应用。 单片机技术还在不断发展,其在智能家居和智能城市、物联网设备和系统、边缘计算和边缘人工智能等领域的应用日益广泛。例如,通过单片机与传感器、执行器等设备的连接,可以实现智能家居设备的远程控制、自动化调节和智能化管理;作为物联网设备的核心控制单元,单片机能够实现物联网设备之间的互联互通,为物联网系统的运行提供基础支持;在边缘计算和边缘人工智能方面,单片机可以与人工智能技术结合,实现设备端数据的实时处理和智能分析。
2024-11-27 09:50:36 2KB 单片机. stm32
1
FreeRTOS 是一个实时操作系统(RTOS)内核,广泛应用于嵌入式系统,特别是微控制器(MCU)如STM32。STM32是意法半导体(STMicroelectronics)推出的一系列基于ARM Cortex-M架构的微处理器。在FreeRTOS中,任务挂起和恢复是其任务调度机制的重要组成部分,用于管理不同任务的执行流程。 1. **任务和任务状态** 在FreeRTOS中,任务是执行特定功能的独立线程。每个任务都有自己的栈空间和优先级。任务的状态包括就绪、运行、阻塞和挂起。任务在运行时执行代码,当暂停执行时进入挂起或阻塞状态。 2. **任务挂起** - **挂起过程**:任务挂起意味着当前正在执行的任务暂停执行,将其从运行状态转移到挂起状态。这通常发生在任务调用`vTaskSuspend()`函数时。挂起任务不会占用CPU时间,直到被恢复。 - **挂起原因**:任务可能会因为等待事件(如信号量、互斥锁、队列等)而挂起,或者为了给其他更高优先级的任务让出CPU资源。 - **挂起优点**:挂起任务可以有效地控制任务执行顺序,避免低优先级任务占用过多CPU时间,提高系统响应速度。 3. **任务恢复** - **恢复过程**:任务可以通过调用`vTaskResume()`或`xTaskResumeFromISR()`函数来恢复。前者通常在任务级别操作,后者则可以在中断服务程序中使用。 - **恢复条件**:任务恢复通常是由于等待的事件发生,或者通过其他任务或中断服务程序的干预。一旦恢复,任务将被放入就绪列表,等待调度器分配CPU时间。 - **恢复策略**:恢复策略通常与任务调度策略有关,例如优先级调度,高优先级任务恢复后会立即抢占CPU,而相同优先级的任务则按照挂起的先后顺序恢复。 4. **实验实践** "FreeRTOS实验6-3 FreeRTOS任务挂起和恢复实验"可能包含以下内容: - 创建两个或多个任务,每个任务执行不同的操作。 - 演示如何在任务中挂起自身,或者挂起其他任务。 - 展示如何根据特定条件恢复任务,如计时器超时、外部事件触发等。 - 观察并分析挂起和恢复对系统行为的影响,如任务切换、系统响应时间和资源利用率。 5. **实际应用** 在实际项目中,任务挂起和恢复广泛用于实现复杂的并发控制,如设备驱动、网络通信、定时任务等。例如,在STM32开发中,可能有一个任务负责接收数据,当数据接收完成后,挂起该任务,启动另一个任务进行数据处理。 总结,FreeRTOS的任务挂起和恢复是其核心功能之一,对于实现高效、实时的嵌入式系统至关重要。通过实验学习,开发者可以更好地理解RTOS的工作原理,优化系统性能,并解决多任务环境下可能出现的同步和通信问题。
2024-11-27 00:31:38 1.43MB FreeRTOS STM32
1
STM32F407是一款基于ARM Cortex-M4内核的微控制器,由意法半导体(STMicroelectronics)生产。FreeRTOS是一个实时操作系统(RTOS),适用于小型嵌入式系统,如STM32系列MCU。在STM32F407上运行FreeRTOS可以提供多任务调度、内存管理、中断处理等功能,极大地提高了系统的灵活性和效率。 在这个"STM32F407 FreeRTOS例程"中,我们可以学习到如何在STM32F407上配置和使用FreeRTOS。以下是一些关键的知识点: 1. **FreeRTOS的基本概念**:FreeRTOS的核心包括任务(Task)、信号量(Semaphore)、互斥锁(Mutex)、队列(Queue)、定时器(Timer)等。理解这些概念对于使用FreeRTOS进行系统设计至关重要。 2. **任务创建**:在STM32F407上,我们可以通过`xTaskCreate()`函数创建任务。这个函数需要提供任务处理函数、优先级、任务堆栈大小等参数。 3. **任务调度**:FreeRTOS采用优先级抢占式调度,高优先级任务可以打断低优先级任务的执行。`vTaskStartScheduler()`函数启动调度器,使系统开始执行最高优先级的任务。 4. **同步与通信机制**:信号量和互斥锁用于任务间的同步,队列则用于任务间的通信。例如,通过发送消息到队列,一个任务可以通知另一个任务执行特定操作。 5. **内存管理**:FreeRTOS提供了内存分配和释放的API,如`pvPortMalloc()`和`vPortFree()`,用于动态分配和释放堆内存。 6. **中断服务例程**:STM32F407具有丰富的外设接口,中断处理是必不可少的。在FreeRTOS环境中,中断服务例程需要特别注意不要长时间运行,以免阻塞任务调度。 7. **FreeRTOS配置**:FreeRTOS的配置可以通过修改`FreeRTOSConfig.h`文件实现,包括任务数量、堆栈大小、时钟频率等设置。 8. **开发环境**:通常,我们会使用如Keil MDK或GCC等编译器,配合STM32CubeMX配置工具来初始化STM32F407的外设,并设置FreeRTOS参数。 9. **调试技巧**:使用如ST-Link或J-Link等调试器,结合IDE的断点、变量观察窗口等功能,可以有效地调试FreeRTOS系统。 10. **中断优先级**:STM32F407支持可编程中断优先级,合理设置中断优先级能避免优先级反转问题,确保系统的响应速度和稳定性。 通过深入学习和实践这个STM32F407 FreeRTOS例程,开发者可以掌握在嵌入式系统中如何有效地利用RTOS进行任务管理,提升系统性能,为复杂的项目打下坚实的基础。同时,这个例子也可以作为进一步学习其他RTOS或微控制器的参考。
2024-11-27 00:23:58 33.33MB stm32 FreeRTOS
1
标题中的“vl531x stm32l051”指的是一个基于VL53L1X传感器和STM32L051微控制器的项目。VL53L1X是一款高级的飞行时间(Time-of-Flight, TOF)激光测距传感器,由意法半导体(STMicroelectronics)制造,常用于实现精确的距离测量、手势识别和避障等功能。STM32L051是STM32系列的一款超低功耗微控制器,具备强大的Arm Cortex-M0内核,适用于需要节能特性的应用。 描述中提到,这个项目已经准备好可以直接添加到工程中进行编译。这意味着它包含了必要的驱动程序和配置,使得开发者可以快速地在STM32L051上运行VL53L1X的示例代码。"main函数直接调用 AutonomousLowPowerRangingTest()" 表示存在一个名为`AutonomousLowPowerRangingTest()`的函数,它是主程序启动后执行的,用于测试传感器的自主低功耗测距功能。硬件IIC(Inter-Integrated Circuit)接口的使用意味着VL53L1X与STM32之间的通信是通过I2C总线进行的,这是一种常见的微控制器与外围设备之间通信的串行接口。 关于VL53L1X传感器,它具有以下特点: 1. **高精度距离测量**:VL53L1X能提供毫米级的精确距离数据,适合多种应用场景。 2. **自动校准**:该传感器具备自动温度和光学补偿功能,确保在不同环境条件下测量的准确性。 3. **低功耗模式**:适合需要长时间电池供电的设备,如物联网(IoT)设备。 4. **多目标检测**:支持同时检测多个物体,增加了其在复杂环境下的适应性。 5. **可编程性**:可以通过配置寄存器来定制其工作模式和参数,以满足特定应用需求。 STM32L051微控制器则具有以下特性: 1. **超低功耗**:采用优化的电源管理策略,适合电池供电或能量采集系统。 2. **高性能**:内置32位Arm Cortex-M0内核,运行速度可达32MHz。 3. **丰富的外设集**:包括模拟和数字I/O、定时器、ADC、SPI、I2C等,便于连接各种外围设备。 4. **内存配置**:不同型号有不同大小的闪存和RAM,可根据项目需求选择。 5. **易于开发**:有广泛的开发工具和库支持,如STM32CubeMX配置工具和HAL/Low Layer库。 结合标签“vl531x stm32”,我们可以推断这是一个将高级测距传感器与主流微控制器集成的实例,适用于智能家居、物联网、机器人等领域。压缩包中的“vl53l1x”可能包含了VL53L1X的相关驱动源码、配置文件或者示例项目,方便开发者进行二次开发。 总结来说,这个项目提供了利用STM32L051微控制器控制VL53L1X传感器的平台,通过硬件I2C接口进行通信,可以快速进行测距功能的验证和实际应用的开发。对于希望在低功耗设备上实现精确测距功能的工程师来说,这是一个有价值的资源。
2024-11-26 16:12:08 224KB vl531x stm32
1
在电子设计领域,驱动数码管是一项常见的任务,尤其是在制作各种显示设备或实验项目时。74HC595是一款常用的串行输入、并行输出的8位移位寄存器,它能有效地帮助我们实现这一目标。在这个项目中,我们将讨论如何使用74HC595来驱动四位数码管,并结合STM32微控制器进行操作。 74HC595的特性在于它的串行数据输入(DS)和时钟输入(SHCP)以及存储器复位(SRCLK)端口,这些允许我们通过串行方式传递数据,然后在并行输出端口(Q0-Q7)上提供数据。这种设计使得我们可以用较少的GPIO资源控制更多的外部设备,比如在这个案例中只需要3个GPIO引脚即可驱动四位数码管。 我们要理解四位数码管的工作原理。四位数码管通常由四个七段显示器组成,每个七段显示器可以显示0-9的数字以及一些特殊字符。每个七段显示器由a至g七个独立的LED段组成,通过控制这些LED段的亮灭,可以组合出不同的数字和字符。 在实际操作中,我们首先要将STM32的3个GPIO引脚配置为推挽输出,分别连接到74HC595的SHCP、SRCLK和DS端口。然后,通过编程将数据逐位送入DS端口,并在每次数据传输后触发时钟信号,使数据向右移动并存储在寄存器中。当所有数据都送入后,通过使能端口(OE)控制74HC595的输出状态,使数码管显示数据。 对于四位数码管,我们需要发送32位(4 * 8 = 32)的数据,每8位对应一个七段显示器的亮灭状态。每个数字可以用二进制编码表示其七段的状态,例如,数字“1”的编码是00000111,数字“0”的编码是11110000。通过这种方式,我们可以控制四位数码管显示任意四位数字。 在STM32的固件开发中,可以使用HAL库或LL库来操作GPIO和延时函数,以确保正确的时间间隔触发时钟信号。此外,为了动态显示,可能还需要编写一个循环程序,按顺序更新四位数码管的显示内容,以实现滚动显示或动态效果。 通过巧妙地利用74HC595的串行转并行特性,我们可以用有限的GPIO资源驱动多位数码管,这对于资源受限的嵌入式系统非常有利。在实际应用中,这种技术常用于制作数字计数器、温度显示器、频率计等项目,对于初学者来说,是一个很好的实践平台,有助于理解和掌握数字逻辑和微控制器的接口技术。在提供的"15.595锁存器"文件中,应该包含了具体的电路图、代码示例和相关说明,可以帮助你进一步学习和实现这个项目。
2024-11-23 14:58:26 2.56MB STM32
1
单片机接入云端大部分都会用到json字符串的构建和解析,该资源是通过stm32f1系列单片机构建了json并完成解析,具体内容可参考博客文章。
2024-11-23 08:03:25 6.81MB stm32 json
1
//PC1<-->ERR //PC2<-->COMM //PC3<-->RUN //PB10<-->UART3_TX //PB11<-->UART3_RX //PA4<-->DAC_OUT1 //PA5<-->DAC_OUT2 //ADC1_6<-->PA6 //ADC1_7<-->PA7 //ADC1_8<-->PB0 //ADC1_9<-->PB1 enum PLCTYPEStatus { MON=0,FX1S, FX1N,FX2N }; char PLCTYPE=FX2N; #define brd 19200 //#define brd 9600 //#define PLCTYPE 0X6662//FX1N //#define PLCTYPE 0X5EF6 //#define PLCTYPE 0X56C2//FX1S #define XX00 (GPIOA->IDR &GPIO;_Pin_0)//PA0 #define XX01 (GPIOA->IDR &GPIO;_Pin_1)//PA1 #define XX02 (GPIOC->IDR &GPIO;_Pin_5)//PC5 #define XX03 (GPIOC->IDR &GPIO;_Pin_6)//PC6 #define XX04 (GPIOC->IDR &GPIO;_Pin_7)//PC7 #define XX05 (GPIOC->IDR &GPIO;_Pin_4)//PC4 #define XX06 (GPIOA->IDR &GPIO;_Pin_14)//PA14 #define XX07 (GPIOA->IDR &GPIO;_Pin_13)//PA13 #define XX10 (GPIOA->IDR &GPIO;_Pin_11)//PA11 #define XX11 (GPIOA->IDR &GPIO;_Pin_8)//PA8 #define XX12 (GPIOC->IDR &GPIO;_Pin_9)//PC9 #define XX13 (GPIOD->IDR &GPIO;_Pin_15)//PD15 #define XX14 (GPIOD->IDR &GPIO;_Pin_14)//PD14 #define XX15 (GPIOD->IDR &GPIO;_Pin_13)//PD13 #define XX16 (GPIOD->IDR &GPIO;_Pin_12)//PD12 #define XX17 (GPIOD->IDR &GPIO;_Pin_11)//PD11 #define XX20 (GPIOD->IDR &GPIO;_Pin_10//PD10 #define XX21 (GPIOD->IDR &GPIO;_Pin_9)//PD9 #define XX22 (GPIOD->IDR &GPIO;_Pin_8)//PD8 #define XX23 (GPIOB->IDR &GPIO;_Pin_15)//PB15 #define XX24 (GPIOB->IDR &GPIO;_Pin_14)//PB14 #define XX25 (GPIOB->IDR &GPIO;_Pin_13)//PB13 #define XX26 (GPIOE->IDR &GPIO;_Pin_15)//PE15 #define XX27 (GPIOE->IDR &GPIO;_Pin_10)//PE10 #define XX30 (GPIOE->IDR &GPIO;_Pin_14)//PE14 #define XX31 (GPIOE->IDR &GPIO;_Pin_11)//PE11 #define XX32 (GPIOE->IDR &GPIO;_Pin_13)//PE13 #define XX33 (GPIOE->IDR &GPIO;_Pin_12)//PE12 #define XX34 (GPIOB->IDR &GPIO;_Pin_12)//PB12<-->RUN_SW #define XX35 (GPIOE->IDR &GPIO;_Pin_7)//PE7<-->POWER DETECT //YY00<-->PA2 //YY01<-->PC8 //YY02<-->PA15 //YY03<-->PC10 //YY04<-->PC11 //YY05<-->PC12 //YY06<-->PD0 //YY07<-->PD1 //YY10<-->PD3 //YY11<-->PD4 //YY12<-->PD5 //YY13<-->PD6 //YY14<-->PD7 //YY15<-->PB3 //YY16<-->PB4 //YY17<-->PB5 //YY20<-->PB6 //YY21<-->PB7 //YY22<-->PE1 //YY23<-->PE2 //YY24<-->PE3 //YY25<-->PE4 //YY26<-->PE5 //YY27<-->PE6
2024-11-22 11:34:12 5.66MB FX1N_60点
1
在本文中,我们将深入探讨如何使用C#编程语言创建一个串口波形显示软件,即简易示波器。这个程序能够接收来自下位机的串口数据,并将这些数据实时转化为图形化的波形显示,这对于嵌入式系统、电子工程以及物联网应用等领域具有很高的实用价值。我们将讨论以下关键知识点: 1. **C#基础**:C#是一种面向对象的编程语言,由微软开发,广泛应用于Windows平台的软件开发。它支持类、接口、继承、多态等面向对象特性,同时也包含丰富的库和.NET框架,便于进行GUI(图形用户界面)和网络通信。 2. **串口通信**:串口通信是计算机与其他设备之间传输数据的一种方式,通常包括RS-232、USB到串口转换等。C#中的`System.IO.Ports`命名空间提供了SerialPort类,用于处理串口打开、关闭、读写操作。 3. **事件驱动编程**:在C#中,串口通信常采用事件驱动的方式。例如,SerialPort类有DataReceived事件,当串口接收到新数据时,会触发该事件,我们可以为这个事件注册事件处理函数来处理接收到的数据。 4. **数据解析**:下位机发送的波形数据通常是以二进制或ASCII格式。我们需要编写代码解析这些数据,将其转化为可绘制的数值。可能涉及浮点数转换、字节序处理(如大小端转换)等。 5. **图形化显示**:在C#中,可以使用Windows Forms或WPF(Windows Presentation Foundation)来创建GUI。其中,PictureBox控件可以用来显示动态变化的波形图像,而Chart控件则提供更高级的图表绘制功能,如线图、曲线图,适合展示连续变化的波形。 6. **实时更新与性能优化**:为了实现波形的实时显示,我们需要处理好数据的刷新频率和UI更新之间的平衡。可能需要使用双缓冲技术避免闪烁,或者使用异步编程避免阻塞主线程。 7. **错误处理**:在串口通信中,可能会遇到各种异常,如连接失败、数据校验错误等。因此,良好的错误处理机制是必要的,可以确保程序在异常情况下也能稳定运行。 8. **用户交互**:一个完整的示波器应用还应包含配置选项,如波特率、校验位、数据位等串口设置,以及波形参数调整(如采样率、分辨率等)。可以使用控件如ComboBox、TrackBar等提供用户配置界面。 9. **调试与测试**:在开发过程中,使用调试工具如Visual Studio的调试器可以帮助定位问题。同时,需要模拟不同条件下的串口数据流,确保示波器在各种情况下都能正确显示波形。 10. **发布与部署**:完成开发后,需要将应用程序打包成安装程序,以便用户在其他计算机上运行。这涉及到编译、资源嵌入、依赖库的处理等步骤。 利用C#创建串口波形显示软件涉及了从底层的串口通信、数据处理,到上层的图形显示和用户交互等多个层面的技术。理解并掌握这些知识点,对于开发出高效、稳定的示波器软件至关重要。
2024-11-19 22:26:34 161KB
1
《VC串口示波器:简单明了的使用指南》 在嵌入式系统开发过程中,PC机与单片机之间的通信调试是一项重要的任务。为了有效地进行数据传输和实时显示,开发者经常需要用到串口示波器工具。本文将详细介绍如何使用VC编写的串口示波器,帮助开发人员更高效地完成调试工作。 让我们了解串口通信的基本概念。串口,即串行通信接口,是计算机与外部设备之间进行数据传输的一种方式。常见的串口标准有RS-232、RS-485等。在单片机开发中,串口因其简单易用、成本低廉的特点,常用于设备间的短距离通信。 VC串口示波器则是一种基于Visual C++(简称VC)开发的软件工具,它允许用户通过串口接收来自单片机的数据,并在PC上以图形化的方式展示出来,形成类似于电子示波器的效果。这对于分析数据传输过程中的波形变化、检测信号质量以及查找通信错误非常有帮助。 在使用VC串口示波器之前,确保你的PC已经正确配置了串口。通常,这涉及到设置波特率、数据位、停止位、校验位等参数,这些参数需要与单片机端保持一致。例如,常见的波特率有9600、19200、38400等,数据位一般为8位,停止位通常设为1位,校验位可以选择奇偶校验或无校验。 接下来,打开COM ASSIST1.1.exe,这是我们的串口示波器软件。在软件界面中,你会看到串口选择、波特率设置等相关选项。选择正确的串口(如COM1、COM2等),设置相应的波特率,然后点击连接。连接成功后,软件会开始监听串口的数据流。 当单片机发送数据时,VC串口示波器会捕获这些数据并进行解析。这里的“数据格式可选择”意味着你可以根据实际需求设定数据解析规则,例如,如果数据是以ASCII码发送,那么示波器将按字符解析;如果是以二进制格式,那么需要按照字节进行解读。 软件会将接收到的数据实时绘制到图表区域,形成动态的波形图。这对于观察信号的实时变化和波动情况非常直观。开发者可以通过调整显示范围、采样频率等参数,来优化波形图的显示效果,以便更好地分析通信质量。 此外,VC串口示波器通常还具备数据记录功能,可以保存接收到的数据到文件,便于后期分析或与其他工具配合使用。同时,软件可能提供了一些高级功能,如滤波、触发条件设置等,以满足不同层次的调试需求。 VC串口示波器是PC与单片机通信调试的强大助手,它的简易操作和丰富的功能使开发过程更加高效。通过熟练掌握其使用方法,可以极大地提高开发效率,降低开发难度,让单片机项目开发更加得心应手。
2024-11-19 22:11:01 136KB 串口
1