PowerBI数据可视化模板和样例包括客户利润分析、人力资源分析、财务分析、销售机会分析、市场和销售分析、零售门店分析、供应链可视化分析。模板和样例数据都在资源包里面,下载一个PowerBI客户端就可以打开,可以根据这个套用自己公司的数据。
2025-07-10 23:25:38 74.16MB PowerBI 数据可视化
1
# 基于数据可视化的微博评论舆情监控分析系统 ## 项目简介 这是一个基于数据可视化的微博评论舆情监控分析系统。通过爬取微博上的评论数据,结合情感分析技术,实现对特定话题的舆情监控和深度分析。项目旨在帮助用户更好地了解微博话题的评论情况、热度发展、各地区评论焦点及网友情绪反应。 ## 项目的主要特性和功能 1. 数据可视化: 通过直观的图表展示舆情相关数据,包括评论数量、话题热度、舆情失控风险、情感分析等。 2. 舆情监控: 通过分析微博评论数据,监测特定话题的舆情发展趋势和失控风险。 3. 情感分析: 利用情感分析技术,对微博评论进行情感倾向判断,分析网友的情绪反应。 4. 地域分析: 通过地图展示不同地区的评论焦点,分析各地区网友的关注点差异。 ## 安装使用步骤 2. 打开项目: 使用Visual Studio Code (VScode) 打开项目文件夹。
2025-07-09 14:02:14 5.44MB
1
100+款大屏展示数据可视化UI界面,预览地址:【https://blog.csdn.net/weixin_43876824/article/details/137484180】数据可视化大屏案例PSD文件,包含预览图和PS源文件。 电子看板,数据大屏,数据展示模板,大屏可视化,大数据分析平台,ui设计模板(只包含psd设计文件,不含源码) 大数据可视化模板、模板框架、动态控件、可视化大数据、监控平台、图表元件库、数据看板、驾驶舱、统计图表、大数据、大屏展示、智慧安防、党建、旅游、运输、医疗、校园、工业园区环境监测看板。需要的自取。
2025-07-08 07:05:44 67.74MB UI 数据可视化 大屏展示
1
在当前的教育领域,数据可视化技术的应用日益广泛,尤其是在考研分数线的统计和分析中,可视化工具能够帮助人们直观地理解和分析大量的数据信息。本项目即为此类应用的一个实例,其核心内容涉及使用Python编程语言结合pyecharts库来创建动态的图表,并利用词云图来展现数据特征。 pyecharts是一个用于生成Echarts图表的Python库,Echarts是一个由百度开源的数据可视化工具,以其丰富的图表类型和良好的交互性广泛应用于Web网页中。pyecharts封装了Echarts的接口,使得Python开发者能够更加便捷地在Python环境中创建图表,并将其嵌入Web应用或Jupyter Notebook中进行展示。 项目中提到的“约500行代码”意味着该项目具有一定的代码量,但不属于过于庞大的项目,适合用于学习和交流。此外,项目还包括了词云图的生成,词云图是一种利用文字大小来表示文本数据中各词语出现频率的图表,常用于展示热门话题、关键词汇等,能够为观察者提供一种直观的文本内容概览。 文件名称列表中包含了多个CSV文件,这些文件很可能存储了历年的考研国家分数线数据,以及相关的统计信息。CSV文件是以逗号分隔的值的纯文本文件格式,便于存储和交换表格数据,非常适合作为数据分析的原始数据源。 HTML文件可能是项目生成的网页文件,用于在Web浏览器中展示数据可视化结果。IPython Notebook文件(.ipynb)是一种交互式计算的文件格式,可以在其中编写和执行代码,并嵌入文本、数学公式、图表等元素,非常适合于数据分析、可视化以及教学和研究。 值得注意的是,项目中还包含了一个名为“.ipynb_checkpoints”的文件夹,这通常是在使用Jupyter Notebook时自动生成的,用于保存工作过程中各版本的检查点文件,以便于在出现错误时能够回退到之前的某个状态。 通过以上文件和描述可知,这个项目是一个结合了数据分析和可视化技术的教育类应用。它不仅展示了如何使用Python和相关库处理和可视化数据,还体现了在教育数据分析领域,数据可视化的重要性。对于教育工作者、数据分析师以及对考研感兴趣的学生来说,这类项目不仅提供了学习数据科学和可视化技术的实践平台,也提供了一种分析和解释教育数据的新视角。
2025-06-27 23:53:05 9.12MB springboot vue java
1
在当今数字化时代,房地产市场作为国民经济的重要组成部分,其动态变化受到广泛关注。二手房市场作为房地产市场的一个重要分支,不仅反映了房地产市场的整体走势,也直接影响着消费者的购房决策。因此,对于二手房市场的研究和分析具有重要的现实意义。本篇文章将围绕二手房数据集的数据采集、分析与数据可视化这一主题展开,详细探讨如何通过技术手段来捕捉二手房市场的关键信息,并利用数据分析与可视化技术来展示和解读这些信息。 数据采集是进行二手房市场分析的基础。在数据采集过程中,主要利用网络爬虫技术来抓取二手房的相关信息。网络爬虫是一种自动获取网页内容的程序或脚本,它能够模拟人类用户在互联网中浏览网页的行为。在本案例中,网络爬虫被设计用来访问各大房地产网站、二手房交易平台上公布的房源信息,包括房源位置、价格、户型、面积、建筑年代、楼层信息、装修情况等多个维度的数据。这些数据通常以文本、图片或表格的形式存在于网页中,爬虫需要通过特定的解析规则来识别并提取出结构化的数据信息。 在完成数据采集之后,数据分析便成为了下一个重要的步骤。数据分析旨在从大量的二手房数据中提取有价值的信息,以便对市场状况进行评估。数据分析的过程涉及数据清洗、数据处理、特征提取和建立分析模型等多个环节。数据清洗是为了去除采集过程中可能出现的重复、错误和不完整的数据,保证数据的质量;数据处理则是将清洗后的数据进行整理和转换,使之符合分析模型的需求;特征提取是从数据中识别出对分析目标有影响的关键特征;分析模型的建立则是利用统计学和机器学习算法来识别数据中的模式和关联性,为市场分析提供依据。 数据可视化是将复杂的数据分析结果以图形化的方式呈现出来,使得非专业人士也能够直观地理解数据分析的结果。在本案例中,使用了pyecharts这一可视化工具来展示分析结果。pyecharts是一个基于Python的数据可视化库,它提供了丰富的图表类型,能够将复杂的数据转化为直观的图表,如柱状图、折线图、散点图、饼图、地图等多种形式,从而帮助分析者更好地解释数据和传达信息。 具体到本数据集,房地产-二手房信息抓取+可视化项目中,数据可视化主要聚焦于展示二手房的价格分布、地域分布、交易活跃度等关键指标。例如,通过柱状图可以展示不同区域二手房价格的分布情况;通过地图可以直观地看到哪些地区的房源更为密集;通过折线图可以分析二手房价格随时间的变化趋势。这些可视化图表不仅为房地产行业的专业人士提供了决策支持,也为普通消费者了解市场提供了便捷的途径。 二手房数据集的数据采集、分析与可视化是一个紧密结合、相互依赖的过程。通过高效的网络爬虫技术进行数据采集,使用先进的数据分析方法进行深度挖掘,最后利用数据可视化技术将分析成果转化为易于理解的信息,这一完整的流程极大地促进了二手房市场的透明化,也为房地产市场的研究者、投资者和政策制定者提供了有力的工具和参考依据。
2025-06-22 21:57:14 8.82MB 数据采集 数据分析 数据可视化
1
在当今的信息时代,数据可视化成为了一个重要的工具,它能够帮助人们更直观地理解和分析复杂的数据信息。特别地,在互联网文化产品评价领域,如豆瓣电影这样的平台,数据可视化分析更具有其独特价值和应用前景。豆瓣电影作为国内知名的电影评分和评论社区,积累了大量关于电影的用户评价数据,这些数据的背后蕴藏着丰富的情感倾向和审美偏好信息。 数据可视化分析是一种通过图形化的手段清晰有效地传达信息的方式。在这个项目中,我们将使用Python编程语言,借助于其强大的数据处理和可视化库,如Pandas、Matplotlib和Seaborn等,来进行豆瓣电影数据的分析和可视化。通过对豆瓣电影数据的爬取和整理,我们可以得到电影的评分、评论数、导演、演员、类型等信息。利用这些数据,我们不仅可以对电影作品本身进行排名和分类,还能深入挖掘不同电影类型受用户欢迎的程度,探索导演和演员的影响力,以及分析用户的评论情感倾向等。 通过对这些数据的可视化处理,我们可以更直观地看到各种电影指标之间的相互关系。例如,我们可以使用柱状图来比较不同导演的电影作品的平均评分;用散点图来展示电影评分与评论数量之间的关联;借助于热力图来分析不同时间维度上电影话题的热度变化;还可以利用词云图来呈现评论中最常出现的关键词汇。 这项工作不仅对于电影爱好者和电影产业从业者具有参考价值,而且对于数据分析师来说也是一个实践操作的极佳案例。通过这样的项目,分析师们可以锻炼和展示他们在数据处理、分析和可视化方面的能力。同时,这项工作也对提高数据分析的可读性和传播效率具有重要意义。 在进行数据可视化分析时,需要注意的是选择合适的数据和图表类型来表达特定的信息。例如,时间序列数据适合使用折线图来展示趋势变化;类别数据则适合用饼图或柱状图来表示占比关系;而对于展示变量间的相关性,则可以使用散点图或者相关系数矩阵图等。此外,合理的数据清洗和预处理也是保证数据可视化质量的关键步骤。 利用Python进行的豆瓣电影数据可视化分析,不仅能够帮助人们更直观地理解复杂的数据信息,而且可以为电影行业的市场分析、用户研究以及产品开发等多方面提供科学依据,从而推动电影产业的发展和创新。
2025-06-22 21:53:46 204.48MB
1
PISystem 数据可视化(2020版) PISystem 数据可视化是指通过 PI System 实现数据的可视化,主要用于 industrious automation 和过程控制领域。PI System 是一个集成了数据采集、存储、处理和可视化的数据管理平台。 什么是 PI System? PI System 是一个工业数据管理平台,旨在帮助用户实现工业数据的采集、存储、处理和可视化。PI System 由 OSIsoft 公司开发,已经广泛应用于 industrious automation 和过程控制领域。 PI System 的构造块 PI System 的构造块包括数据采集、数据存储、数据处理和数据可视化四个部分。数据采集部分负责从各种数据源中采集数据;数据存储部分负责存储采集到的数据;数据处理部分负责对数据进行处理和分析;数据可视化部分负责将数据以可视化的形式呈现给用户。 PI 时间 PI 时间是 PI System 中的一个重要概念,它是一个基于时间的数据管理系统。PI 时间系统可以对数据进行时间戳标记,并提供了各种时间相关的功能,例如时间查询、时间分析等。 PI 时间表达式 PI 时间表达式是 PI System 中的一种特殊表达式,用于描述时间相关的信息。PI 时间表达式可以用于描述时间点、时间范围、时间周期等信息。 要记住的规则 在使用 PI 时间时,需要记住以下规则: * PI 时间是基于 UTC 时间的 * PI 时间使用 24 小时制 * PI 时间可以表达日期、时间、秒、毫秒等信息 课程模拟器 课程模拟器是 PI System 中的一种工具,用于模拟 industrious automation 和过程控制场景。课程模拟器可以帮助用户快速了解 PI System 的使用方法和功能。 应用概念 PI Vision - 基于浏览器的显示 PI Vision 是 PI System 中的一种基于浏览器的可视化工具,旨在帮助用户快速查看和分析数据。PI Vision 提供了多种可视化方式,例如图表、表格、地图等。 在 PI Vision 中浏览 PI 标记点、AF 属性和相关资产 在 PI Vision 中,可以浏览 PI 标记点、AF 属性和相关资产等信息。PI 标记点是 PI System 中的一种数据源,AF 属性是 PI System 中的一种 asset 属性。 PI Vision PI Vision 是 PI System 中的一种核心组件,旨在帮助用户快速查看和分析数据。PI Vision 提供了多种可视化方式,例如图表、表格、地图等。 复习有关 PI Vision 的知识 在使用 PI Vision 时,需要复习以下知识: * PI Vision 的基本概念 * PI Vision 的使用方法 * PI Vision 的可视化方式 搜索数据 在 PI Vision 中,可以搜索数据,例如搜索特定的标记点、AF 属性、资产等信息。 PI Vision 显示的高级功能 PI Vision 提供了多种高级功能,例如: * 数据过滤 * 数据排序 * 数据分组 * 数据 聚合等 PI Vision 的其他功能 PI Vision 还提供了多种其他功能,例如: * 数据导出 * 数据报表 * 数据警报等 管理 PI Vision 显示 在使用 PI Vision 时,需要管理 PI Vision 显示,例如: * 配置显示设置 * 管理数据源 * 管理用户权限等 分析并比较相关事件 在 PI Vision 中,可以分析并比较相关事件,例如: * 分析数据趋势 * 比较数据差异 * 分析数据相关性等
2025-06-21 15:41:30 5.76MB
1
idcops 是一个基于 Django 开发,倾向于数据中心运营商使用的,拥有数据中心、客户、机柜、设备、跳线、物品、测试、文档等一系列模块的资源管理平台,解决各类资源集中管理与数据可视化的问题。 idcops 通过“数据中心”来分类管理每个数据中心下面的资源,每个数据中心均是单独的。 idcops是一个专为数据中心运营商设计的资源管理平台,它基于流行的Django框架构建,旨在为数据中心的管理提供一个全面的解决方案。该平台包含了多个功能模块,如数据中心、客户、机柜、设备、跳线、物品、测试以及文档管理等,这些模块共同构成了一个综合性的资源管理系统。 在数据中心模块中,idcops允许运营商对每个独立的数据中心进行分类管理。这种设计确保了不同数据中心之间的资源可以被有效区分,同时也方便了针对特定数据中心的资源进行操作和维护。客户模块则可能包含了与数据中心合作的客户信息管理,便于运营商跟踪客户资源使用情况、服务合同等信息。 机柜模块会关注于机柜的布局、分配以及状态监控,这对于数据中心的物理资源管理至关重要。设备模块则可能涉及到机柜内部设备的详细信息管理,如服务器、存储设备、网络设备等,包括设备的购置、部署、维护、报废等全生命周期管理。 跳线模块的关注点在于数据中心内部线缆的连接管理,包括物理跳线和逻辑跳线的布线图管理,这对于保持数据中心内部网络的稳定性和高效性至关重要。物品模块则可能包含了数据中心内所有非设备类物品的管理,如备用零件、办公用品等。 测试模块为数据中心的日常运维提供了测试工具和手段,包括网络连通性测试、设备性能测试等,确保数据中心的稳定运行。文档模块则是对数据中心内部所有文档资料的管理,包括操作手册、技术文档、运维日志等,提高了数据中心的文档管理水平。 idcops通过这些模块的集成为数据中心运营商提供了一个资源集中管理与数据可视化问题的解决平台。这不仅提高了数据中心的运维效率,而且通过数据可视化使得数据中心的运营状态一目了然,为运营商的决策提供了有力的数据支持。 此外,作为一个网管工具,idcops的开发体现了DevOps的文化,将开发和运维紧密结合起来,提高软件交付的效率和稳定性。通过自动化工具和流程,idcops能够减少运维工作中的人为错误,提高问题解决的速度。 idcops是一个功能全面、设计合理、能够有效提升数据中心管理效率和质量的资源管理平台。通过其丰富的功能模块和数据可视化特性,idcops为数据中心运营商提供了一个强大的工具,以应对数据中心管理过程中的各种挑战。
2025-06-18 20:52:04 3.78MB 网管工具
1
资源内包含帆软cpt源文件,有需要的小伙伴可以自行下载使用,如需查看视频讲解可以访问西瓜视频:https://www.ixigua.com/home/2506516376848260/video/?preActiveKey=pseries&list_entrance=userdetail 或者哔哩哔哩:https://space.bilibili.com/630399480?spm_id_from=333.1007.0.0
2025-06-09 07:44:21 74KB FineReport 数据分析 数据可视化
1
100+套大数据可视化炫酷大屏Html5模板;包含行业:社区、物业、政务、交通、金融银行等,全网最新、最多,最全、最酷、最炫大数据可视化模板。陆续更新中 001 政务服务大数据可视化监管平台 002 水质情况实时监测预警系统 003 酷炫智能大屏数据中心 004 政务大数据共享交换平台 005 可视化监控管理 006 全国疫情实时监控 007 惠民服务平台 008 兰州智慧消防大数据平台 009 某公司大数据监控平台 010 双数智慧公卫-传染病督导平台 011 大数据可视化系统数据分析通用模版 012 某公司大数据展示模版 013 某公司大数据展示模版 014 时实客流量监控中心 015 广西矿产资源大数据监管平台 016 某某科技有限公司-生产数据中心 017 大数据可视化通用素材 018 大数据可视化系统数据分析通用模版 019 大数据可视化系统数据分析通用模版 020 大数据通用模版大标题样 ...
2025-06-07 11:08:37 590.93MB 可视化
1