fredmd_transformed数据集 线性回归 多项式回归 Lasso 岭回归 ElasticNet 等多种机器学习算法 预测模型 机器学习 numpy pandas sklearn 数据分析 数据挖掘 dates RPI W875RX1 DPCERA3M086SBEA CMRMTSPLx RETAILx INDPRO IPFPNSS IPFINAL IPCONGD IPDCONGD IPNCONGD IPBUSEQ IPMAT IPDMAT IPNMAT IPMANSICS IPB51222S IPFUELS CUMFNS HWI HWIURATIO CLF16OV CE16OV UNRATE UEMPMEAN UEMPLT5 UEMP5TO14 UEMP15OV UEMP15T26 UEMP27OV CLAIMSx PAYEMS USGOOD CES1021000001 USCONS MANEMP DMANEMP NDMANEMP SRVPRD USTPU USWTRADE USTRADE USFIRE USGOVT CES0600000007 AWOTMAN AWHMAN
2024-04-14 10:48:55 686KB Python 机器学习
1
python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
2024-04-10 10:35:59 342KB python 机器学习 数据集 股票预测
1
基于python机器学习的全国气象数据采集预测可视化系统 毕业设计 预测模型+爬虫(包含文档+源码+部署教程) 系统功能主要包括数据采集功能、数据可视化功能、数据预测功能、用户登录与注册功能、数据管理功能。其中数据采集功能包含全国实时天气数据采集和上海历史天气数据采集。数据可视化功能包含全国综合天气数据可视化、全国各城市天气数据可视化以及上海历史天气数据可视化。数据预测功能指的是气象分析预测;数据管理指的是多维度的数据管理,包含用户数据、公告数据、全国气象数据管理等。 该系统可以自动地从中国天气网获取实时天气数据,并将数据清洗、存储在MYSQL数据库中。同时,通过ECharts技术实现数据可视化,在大屏幕上实现了全国综合天气数据可视化,以及全国各城市和上海历史天气数据的可视化。其次,系统还实现了机器学习预测天气模型构建与训练,使用scikit-learn、pandas、numpy等工具实现多元线性回归模型。预测模型可以对天气趋势进行分析,提供预测结果。此外,该系统还实现了用户登录和注册功能,以及数据管理模块,用于管理用户数据、公告数据、全国天气数据和上海历史气象数据。
2024-04-07 19:33:49 82.06MB python 机器学习 毕业设计 天气数据
1
scikit_learn-1.1.1-cp311-cp311-win_amd64.whl,python的机器学习库的轮子文件,可直接pip安装,由于从国外官网下载过慢,因此提供本资源,机器学习库是很有用的,他涵盖了大部分监督学习和无监督学习的算法,本文件对应Python版本为python311的64位版本
2024-03-19 16:42:57 7.19MB python 机器学习
1
python,机器学习实证,全国财政总收入机器学习预测python,机器学习实证,全国财政总收入机器学习预测python,机器学习实证,全国财政总收入机器学习预测python,机器学习实证,全国财政总收入机器学习预测python,机器学习实证,全国财政总收入机器学习预测python,机器学习实证,全国财政总收入机器学习预测python,机器学习实证,全国财政总收入机器学习预测
2024-03-15 15:32:59 401KB python 机器学习 实证分析
1
内容概要 资源包括三部分(时间序列预测部分和时间序列分类部分和所需的测试数据集全部包含在内) 在本次实战案例中,我们将使用Xgboost算法进行时间序列预测。Xgboost是一种强大的梯度提升树算法,适用于各种机器学习任务,它最初主要用于解决分类问题,在此基础上也可以应用于时间序列预测。 时间序列预测是通过分析过去的数据模式来预测未来的数值趋势。它在许多领域中都有广泛的应用,包括金融、天气预报、股票市场等。我们将使用Python编程语言来实现这个案例。 其中包括模型训练部分和保存部分,可以将模型保存到本地,一旦我们完成了模型的训练,我们可以使用它来进行预测。我们将选择合适的输入特征,并根据模型的预测结果来生成未来的数值序列。最后,我们会将预测结果与实际观测值进行对比,评估模型的准确性和性能。 适合人群:时间序列预测的学习者,机器学习的学习者, 能学到什么:本模型能够让你对机器学习和时间序列预测有一个清楚的了解,其中还包括数据分析部分和特征工程的代码操作 阅读建议:大家可以仔细阅读代码部分,其中包括每一步的注释帮助读者进行理解,其中涉及到的知识有数据分析部分和特征工程的代码操作。
2024-01-26 20:05:19 407KB python 机器学习
1
python机器学习教程_从零开始掌握Python机器学习:⼗四步 教程 Python 可以说是现在最流⾏的机器学习语⾔,⽽且你也能在⽹上找到⼤量的资源。你现在也在考虑从 Python ⼊门机器学习吗?本教程或 许能帮你成功上⼿,从 0 到 1 掌握 Python 机器学习,⾄于后⾯再从 1 到 100 变成机器学习专家,就要看你⾃⼰的努⼒了。本教程原⽂ 分为两个部分,机器之⼼在本⽂中将其进⾏了整合,原⽂可参阅:7 Steps to Mastering Machine Learning With Python 和 7 More Steps to Mastering Machine Learning With Python。本教程的作者为 KDnuggets 副主编兼数据科学家 Matthew Mayo。 「开始」往往是最难的,尤其是当选择太多的时候,⼀个⼈往往很难下定决定做出选择。本教程的⽬的是帮助⼏乎没有 Python 机器学习背 景的新⼿成长为知识渊博的实践者,⽽且这个过程中仅需要使⽤免费的材料和资源即可。这个⼤纲的主要⽬标是带你了解那些数量繁多的可 ⽤资源。毫⽆疑问,资源确实有很
2023-12-27 19:36:00 261KB python 机器学习 课程资源 文档资料
1
根据某交易平台的二手车交易记录的数据进行价格评估 Python基于机器学习的二手车交易预测评估系统设计与实现项目源码+数据集 python机器学习
2023-12-10 16:37:11 545KB python 机器学习 毕业设计 数据集
1
1.项目基于机器学习和语义识别技术,让机器人理解文本并进行合适的答复。通过使用语音与其交流,实现智能问答、智能音箱及智能机器宠物。 2.项目运行环境:包括 Python 环境、ChatterBot 环境。 Python 3.6 及以上配置。基于 chatterbot 0.8.7 开发,打开 cmd 进入 python 所在的磁盘,输入:pip install –ignore-installed –upgrade chatterbot0.8.7 等待安装即可。 3.项目包括 6 个模块:模型构建、服务器端、客户端、语音录入、接口调用、模型训练及保存。需进入百度云官网:https://ai.baidu.com/,进入我的控制台,打开百度语音进入语音应用管理界面,创建一个新的应用,并记录 APPID、API Key 和 Secret Key 三个值;聊天窗口的 GUI 界面,包括当前用户显示、信息输入框、语音输入按钮、发送和关闭按钮等各种控件并绑定发送消息、输入消息等事件。模型训练这块,可以直接使用项目中训练的模型,也可以根据自己需求替换成其他模型,如使用ChatGPT等通用大语言模型
2023-12-07 10:25:46 14KB python 机器学习 深度学习 语音识别
1
82篇顶会巨佬撰写的入门机器学习与深度学习的神书
2023-11-03 15:30:06 39.14MB python 机器学习
1