python 资源内容: 1、垃圾填埋场地选址(jupyter notebook 实现)。中文描述Python代码实现的过程。 2、Landfill_site_selection_gdal-main。Python实现代码(直接运行)。
2024-10-16 18:03:52 13.16MB python
1
pytorch进行图像去噪处理的复现练习 DnCNN为经典图像去噪算法,论文地址为:https://ieeexplore.ieee.org/abstract/document/8554135 其网络结构如下: 复现的材料和数据集下载地址见ipynb文件中有详细描述与说明。 训练使用pytorch,平台采用谷歌colab进行训练。 在后续实验过程中发现DnCNN在红外图像非均匀性校正上只能做到对图像的PSNR等图像质量上的提升但无法对于图像非均匀性上有所作用
2024-10-09 18:54:17 1.56MB pytorch pytorch python
1
利用python实现加密解密技术,一个简单的实践demo,快速上手
2024-09-26 21:12:14 8KB Python实现 加密解密
1
路径规划在IT行业中是一项至关重要的任务,特别是在机器人导航、游戏设计和地图绘制等领域。A*(A-star)算法是路径规划领域中一个经典的启发式搜索算法,它在保证找到最优解的同时,相比于Dijkstra算法,大大提高了搜索效率。本教程将深入探讨如何使用Python来实现A*算法。 A*算法的核心思想是结合了Dijkstra算法的全局最优性和贪婪最佳优先搜索的局部最优性。它使用了一个评估函数f(n) = g(n) + h(n),其中g(n)是从初始节点到当前节点的实际代价,h(n)是从当前节点到目标节点的预计代价(启发式函数)。启发式函数通常是曼哈顿距离或欧几里得距离,但也可以根据具体问题定制。 Python实现A*算法需要以下步骤: 1. **数据结构**:我们需要定义节点类,包含节点的位置、代价g(n)、预计代价h(n)以及父节点引用,用于构建搜索树。 ```python class Node: def __init__(self, position, g=0, h=0, parent=None): self.position = position self.g = g self.h = h self.parent = parent ``` 2. **启发式函数**:根据问题定义h(n)。例如,如果是在网格环境中,可以使用曼哈顿距离或欧几里得距离。 ```python def heuristic(node1, node2): return abs(node1.position[0] - node2.position[0]) + abs(node1.position[1] - node2.position[1]) ``` 3. **开放列表和关闭列表**:开放列表存放待评估的节点,关闭列表存放已评估过的节点。 4. **主要搜索函数**:这是A*算法的核心,包含一个循环,直到找到目标节点或开放列表为空。 ```python def a_star(start, goal, grid): open_list = PriorityQueue() open_list.put(start, start.g + start.h) closed_list = set() while not open_list.empty(): current_node = open_list.get() if current_node.position == goal.position: return reconstruct_path(current_node) closed_list.add(current_node) for neighbor in get_neighbors(grid, current_node): if neighbor in closed_list: continue tentative_g = current_node.g + 1 # 假设相邻节点代价为1 if neighbor not in open_list or tentative_g < neighbor.g: neighbor.g = tentative_g neighbor.h = heuristic(neighbor, goal) neighbor.parent = current_node if neighbor not in open_list: open_list.put(neighbor, neighbor.g + neighbor.h) ``` 5. **路径重建**:从目标节点开始,沿着父节点回溯,构造出完整的最优路径。 ```python def reconstruct_path(node): path = [node] while node.parent is not None: node = node.parent path.append(node) path.reverse() return path ``` 6. **邻居获取**:根据问题环境定义如何获取当前节点的邻居,例如在二维网格中,邻居可能包括上下左右四个方向。 ```python def get_neighbors(grid, node): neighbors = [] for dx, dy in [(0, -1), (1, 0), (0, 1), (-1, 0)]: # 上下左右 new_position = (node.position[0] + dx, node.position[1] + dy) if is_valid_position(grid, new_position): neighbors.append(Node(new_position)) return neighbors ``` 7. **位置有效性检查**:确保新位置在网格内且无障碍。 ```python def is_valid_position(grid, position): x, y = position return 0 <= x < len(grid) and 0 <= y < len(grid[0]) and grid[x][y] !=障碍物 ``` 在实际应用中,`grid`通常是一个二维数组,表示环境地图,值为0表示可通行,非0表示障碍物。通过这个Python实现,我们可以为各种环境生成最优路径。 在"压缩包子文件的文件名称列表"中提到的"AStar"可能是一个包含上述代码实现的Python文件或者一个已经运行过的示例。通过阅读和理解这个文件,你可以更深入地掌握A*算法的Python实现细节,并将其应用到你的项目中。
2024-09-24 09:25:41 10KB python 人工智能
1
1.Python起源与定义 Python 是由荷兰人吉多·罗萨姆于 1989 年发布的。Python 的第一个公开发行版发行于 1991 年。Python 的官方定义:Python 是一种解释型的、面向对象的、带有动态语义的高级程序设计语言。通俗来讲,Python 是一种少有的、既简单又功能强大的编程语言,它注重的是如何解决问题而不是编程语言的语法和结构。 2.Python的应用范围 Python 在通用应用程序、自动化插件、网站、网络爬虫、数值分析、科学计算、云计算、大数据和网络编程等领域有着极为广泛的应用,像 OpenStack 这样的云平台就是由 Python 实现的,许多平台即服务(PaaS)产品都支持 Python 作为开发语言。近年来,随着 AlphaGo 几番战胜人类顶级棋手,深度学习为人工智能指明了方向。Python 语言简单针对深度学习的算法,以及独特的深度学习框架,将在人工智能领域编程语言中占重要地位。 Python 是一种代表简单主义思想的语言。吉多·罗萨姆对 Python 的定位是“优雅,明确,简单”。Python 拒绝了“花俏”的语法,而选择明确。 可下载源
2024-09-10 11:46:45 890B python mysql 项目源码 课程设计
1
Dijkstra算法python实现,基于邻接矩阵及优先队列 不仅能够求解其实节点到各个节点的最短路径长度,而且并确定各条最短路径上的节点信息
2024-08-23 11:13:41 5KB python Dijkstra 图与网络
1
这个脚本是一个用于某短视频平台的自动化养号脚本,它的目的是通过模拟用户的常规操作来提高账号的活跃度和互动率。以下是脚本的主要功能和组成部分的说明: 准备:Python环境。安装uiautomator2库 需要ADB工具,Android设备。 脚本功能: 自动观看视频:脚本模拟用户观看视频的行为,根据视频内容随机决定观看时长。 随机点赞:根据设定的概率和视频内容决定是否点赞。 关注其他用户:同样基于随机概率和视频内容来决定是否关注视频发布者。 发表评论:从预设的评论库中随机选择评论并发表。 核心逻辑: 使用uiautomator2连接Android,并进行元素定位和操作。 通过分析视频标题和描述中的关键词来决定互动。 使用随机数来模拟用户行为的不确定性。 通过ADB命令模拟输入法切换和发送广播,以实现评论的输入和发送。 运行方式: 确保所有环境和依赖项已正确设置。 修改脚本中的设备名称以匹配实际情况。 运行脚本。 注意: 过度自动化可能违反视频App的服务条款,应谨慎使用。 脚本的行为应符合视频App平台的规则和指南。 脚本的稳定性和效果可能受到App版本更新和设备差异的影响。
2024-08-17 18:31:35 8KB android python
1
使用Python实现的生辰八字计算和纳音五行计算类,支持实现以下功能: 1.支持公历和农历直接的相互转换; 2.支持生辰八字的计算,即年柱、月柱、日柱和时柱; 3.支持生辰八字对应五行的输出; 4.支持公历和农历两种输入参数。 当前版本:V1.3.20231020140529 有任何bug和建议欢迎大家积极评论,将尽快修复和完善
2024-08-15 10:08:04 12KB python
1
**Python实现的LDPC编译码仿真** 在通信领域,LDPC(Low-Density Parity Check)码是一种高效纠错编码技术,广泛应用于卫星通信、无线网络等场景。它通过构建稀疏的校验矩阵,利用迭代译码算法来提高信息传输的可靠性。本项目提供了Python语言实现的LDPC比特翻转译码和和积译码算法,能够快速地进行仿真,以验证这两种译码策略的效果。 我们来了解下**比特翻转译码算法**。该算法基于Belief Propagation(信念传播),通过迭代更新校验节点和变量节点的信息,找出最有可能的错误比特并进行纠正。在Python实现中,主要涉及以下几个步骤: 1. 初始化:设置初始的错误比特估计值。 2. 消息传递:校验节点向变量节点发送消息,然后变量节点向校验节点返回消息,这个过程会反复进行多次。 3. 比特翻转:根据收到的消息,判断并翻转可能错误的比特位。 4. 终止条件:当满足一定条件(如达到最大迭代次数或信噪比阈值)时停止迭代。 **和积译码算法**,又称Sum-Product Algorithm,也是基于信念传播的一种译码策略。和积算法在处理非对称信道时表现更优,计算复杂度稍高,但解码性能通常优于比特翻转。其主要步骤包括: 1. 初始化:和积算法同样需要初始化,但这里会涉及到先验概率的计算。 2. 消息传递:与比特翻转类似,也是进行校验节点和变量节点间的消息传递。 3. 更新概率:根据接收到的消息,更新每个比特为0和1的概率。 4. 译码决策:根据概率选择最可能的状态,即比特值。 5. 终止条件:同比特翻转译码,根据预设条件决定是否结束迭代。 Python实现的LDPC编译码仿真项目,可以方便地调整参数,如码率、信噪比、迭代次数等,从而观察不同条件下的误码率性能。通过对比两种译码算法的仿真结果,我们可以分析它们在不同情况下的优势和局限性,为实际应用提供参考。 在具体操作上,项目中的代码可能包含以下部分: - **LDPC码生成器**:生成具有特定结构的LDPC码,如随机生成或采用已知的构造方法。 - **信道模型**:模拟不同类型的信道,如AWGN(Additive White Gaussian Noise)白高斯噪声信道。 - **译码模块**:实现比特翻转和和积译码算法,包括消息传递、决策等核心功能。 - **仿真循环**:设置参数,运行译码过程,并记录误码率等性能指标。 - **结果展示**:以图形化方式展示误码率曲线,便于分析比较。 这个Python项目为学习和研究LDPC编译码提供了一个实用的工具,通过直观的仿真结果,用户可以深入理解这两种译码算法的工作原理,并探索如何优化它们的性能。无论是通信工程的学生还是研究人员,都能从中受益匪浅。
2024-08-13 13:47:55 3KB python LDPC
1
在机器学习领域,支持向量机(Support Vector Machine,简称SVM)是一种强大的监督学习算法,常被用于分类和回归任务。在这个项目中,我们将探讨如何利用Python来实现SVM进行图像识别分类。这个过程对初学者非常友好,因为代码通常会包含详尽的注释,便于理解。 我们需要理解SVM的基本原理。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点被最大程度地分开。这个超平面是距离两类样本最近的距离最大化的边界。在二维空间中,这个超平面可能是一条直线;在高维空间中,它可能是一个超平面。SVM通过核函数将低维数据映射到高维空间,使得原本线性不可分的数据变得可以线性分离。 在图像识别中,我们首先需要提取图像的特征。HOG(Histogram of Oriented Gradients,导向梯度直方图)是一种流行的方法,它能有效地捕获图像中的形状和边缘信息。HOG特征的计算包括以下几个步骤: 1. 尺度空间平滑:减少噪声影响。 2. 灰度梯度计算:计算每个像素的梯度强度和方向。 3. 梯度直方图构造:在小的局部区域(细胞单元)内统计不同方向的梯度数量。 4. 直方图归一化:防止光照变化的影响。 5. 块级积累:将相邻的细胞单元组合成一个块,进行方向直方图的重排和标准化,进一步增强对比度。 6. 特征向量构建:将所有块的直方图组合成一个全局特征向量。 接下来,我们可以使用这些HOG特征作为输入,训练SVM分类器。Python中常用的机器学习库Scikit-Learn提供了SVM的实现。我们可以通过以下步骤进行操作: 1. 加载数据集:通常我们会用到预处理好的图像数据集,如MNIST或CIFAR-10。 2. 准备数据:将图像转换为HOG特征,同时分割数据集为训练集和测试集。 3. 创建SVM模型:选择合适的核函数,如线性核、多项式核或RBF(高斯核),并设置相应的参数。 4. 训练模型:使用训练集对SVM进行拟合。 5. 验证与测试:在测试集上评估模型的性能,例如计算准确率、召回率和F1分数。 6. 应用模型:对新的未知图像进行预测,分类结果。 在实现过程中,我们需要注意数据预处理,如归一化特征,以及选择合适的参数进行调优,如C(惩罚参数)和γ(RBF核的宽度)。交叉验证可以帮助我们找到最佳参数组合。 本项目中的代码示例将详细展示这些步骤,通过注释解释每部分的作用,帮助初学者快速上手SVM图像分类。通过实践,你可以深入理解SVM的工作机制,并掌握如何将其应用于实际的图像识别问题。
2024-08-05 09:07:03 218.95MB python 支持向量机 机器学习 图像分类
1