强化学习——OpenAI Gym——环境理解和显示 本文以CartPole为例。 新建Python文件,输入 import gym env = gym.make("CartPole-v0") # 定义使用gym库中的环境:CartPole env = env.unwrapped # 打开包装 # 以上两句可换成 env = gym.make('CartPole-v0').unwrapped print(env.action_space) # 动作空间,输出的内容看不懂 print(en
2021-12-12 17:25:02 39KB AI 化学 学习
1
要求 python - 3.7 keras - 2.4.3 tensorflow - 2.2.0 项目1:车杆 介绍 在此任务中,我们必须在购物车顶部平衡一根杆。 动作空间的数量为2。此处动作空间是离散的。 0向左移动购物车 1向右移动购物车 我在大约60集中使用DQN解决了这个问题。 以下是得分与情节的关系图。 项目2:山地车 介绍 在此任务中,我们必须教车达到山顶处的目标位置。 操作空间的数量为3。在这种环境下,操作空间是离散的。 0向左移动汽车 1什么也不做 2向右移动汽车 我在大约15集中使用DQN解决了此问题。 以下是得分与情节的关系图。 项目3:Pendulam 介绍 在此任务中,我们必须平衡摆锤的颠倒状态。 作用空间的数量为1,这是施加在关节上的扭矩。 动作空间在这里是连续的。 0扭矩[-2,2] 我在大约100集中使用DDPG解决了这个问题。 以下是得分与情节的
1
深度SARSA和深度Q学习-LunarLander-v2 环境 在这个项目中,我试图从OpenAI体育馆解决Lunar Lander环境。这是一个二维环境,其目的是教导登月舱模块安全地着陆在固定在点(0,0)的着陆垫上。该代理具有3个推进器:一个在模块的底部,另一个在模块的每一侧。因此,代理人在每个时间步长都有4种可能的动作可供选择:发射每个推进器或什么也不做。给予坐席的奖励取决于许多因素:发射底部推进器会产生-0.3的奖励,而发射侧面推进器会产生-0.03的奖励。如果探员安全地降落在着陆垫上,将获得+100分的奖励,此外,与地面接触的模块的每条腿都将获得+10分的奖励。当代理程序着陆或崩溃时,已达到终端状态。为了检测终端状态,可以提取一个状态向量,该状态向量指示代理的位置,其当前速度和环境着陆标志,以指示腿是否与地面接触。还可以提取代表环境中代理图片的RGB阵列。最后,要解决此问题并确定
1
安装openAI的gym进行强化学习时,经常会遇到需要安装Box2D的情况,本资源为其Linux(Ubuntu)下的源码安装包。
2021-11-08 22:48:58 1.39MB gym pyBox2D 源码安装
1
OpenAI体育馆的飞扬的小鸟 该存储库包含用于Flappy Bird游戏的OpenAI Gym环境的实现。 它基于的 。 当前,环境为代理提供以下观察参数: 鸟的y位置; 鸟的垂直速度; 到下一个管道的水平距离; 下一个管道的y位置。 将来,我还打算实现一个环境版本,该版本将提供代表游戏屏幕的图像作为观察结果。 安装 要安装flappy-bird-gym ,只需运行以下命令: $ pip install flappy-bird-gym 用法 像在其他gym环境中一样,使用flappy-bird-gym非常容易。 只需导入包并使用make函数创建环境。 看下面的示例代码: import time import flappy_bird_gym env = flappy_bird_gym.make("FlappyBird-v0") obs = env.reset() while
1
Gym-Duckietown 于OpenAI Gym的自动驾驶汽车模拟器环境。 如果要在出版物中引用此存储库,请使用此bibtex: @misc{gym_duckietown, author = {Chevalier-Boisvert, Maxime and Golemo, Florian and Cao, Yanjun and Mehta, Bhairav and Paull, Liam}, title = {Duckietown Environments for OpenAI Gym}, year = {2018}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/duckietown/gym-duckietown}},
2021-10-28 17:10:43 8.88MB simulator reinforcement-learning robot openai-gym
1
pytorch-LunarLander OpenAI Gym中针对LunarLander-v2环境的不同Deep RL算法的PyTorch实现 我们实施了3种不同的RL算法来解决LunarLander-v2环境: 模仿学习 加强 优势-演员-批评(A2C) 注意:模仿学习是在Keras中实现的,另外两种算法是在PyTorch中实现的 指示: 安装所有依赖项 克隆仓库 运行以下命令: 3.1)python imitation.py 3.2)python reinforce.py 3.3)python a2c.py
2021-10-26 18:58:14 14KB Python
1
从数据中学习动力系统 神经网络动力学,用于基于模型的深度强化学习,且无模型精调
1
#4.4_OpenAI_Gym_using_Tensorflow_(强化学习_Reinforcement_Learning_教学
2021-09-01 21:00:20 29.84MB 学习资源
静脉-健身房 Veins-Gym将Veins模拟导出为Open AI Gyms。 这使得强化学习算法的应用能够解决VANET域中的问题,特别是诸如Tensorflow或PyTorch之类的流行框架。 执照 该项目根据GNU通用公共许可证2.0的条款获得许可。
2021-08-18 12:29:36 16KB simulator reinforcement-learning openai-gym sumo
1