Alphafold2-Pytorch(WIP) 要最终成为一个非官方的工作Pytorch实施 ,令人叹为观止的注意网络解决CASP14。 随着体系结构的更多细节发布,将逐步实施。 复制完成后,我打算将所有可用的氨基酸序列在计算机上折叠起来,并作为学术洪流发布,以供进一步科学使用。 如果您对复制工作感兴趣,请在此#alphafold 安装 $ pip install alphafold2-pytorch 用法 像Alphafold-1一样预测分布图,但要注意 import torch from alphafold2_pytorch import Alphafold2 from alphafold2_pytorch . utils import MDScaling , center_distogram_torch model = Alphafold2 ( dim = 256 ,
1
Burp Intruder 支持各种攻击类型。 通常,一项任务可以通过不止一种类型的攻击来完成,但选择正确的一种可以在进行手动安全测试时为您节省大量精力。 在本教程中,您将学习如何在 Burp Suite 中使用集束炸弹攻击来同时暴力破解用户名和密码字段。
2022-07-06 13:00:11 928KB burpsuite
1
Dynamic Mechanism of Enterprise Technology Innovation_583
2022-06-19 14:06:38 33KB 文档资料
分层注意网络 我对“ ”的实现(Yang等,2016) Yelp的数据可从下载(与Yang的论文中使用的数据集相同) 下载链接: : 将数据放在名为“ data / yelp_YEAR /”的目录中(其中“ YEAR”为年份) 运行“ yelp-preprocess.ipynb”以预处理数据。 格式变为“标签\ t \ t句子1 \ t句子2 ...”。 然后运行“ word2vec.ipynb”以从训练集中训练word2vec模型。 运行“ HAN.ipynb”以训练模型。 运行“ case_study.ipynb”以运行验证集中的一些示例的可视化,包括注意力向量(句子级别和单词级别)和预测结果。 现在,我们在yelp2013测试仪上获得了约65%的准确度。 对超参数进行微调后,它可能会更好。 我们使用的超参数 时代 批量大小 GRU单位 word2vec大小 优化器 学
2022-05-06 10:34:48 5.69MB nlp rnn attention-mechanism paper-implementations
1
STANet用于遥感图像变化检测 它是本文的实现:一种基于时空注意力的方法和一种用于遥感影像变化检测的新数据集。 在这里,我们提供了时空注意力神经网络(STANet)的pytorch实现,用于遥感图像变化检测。 变更记录 20210112: 添加PAM的预训练权重。 ,代码:2rja 20201105: 添加演示以快速入门。 添加更多的数据集加载器模式。 增强图像增强模块(裁剪和旋转)。 20200601: 第一次提交 先决条件 Windows或Linux Python 3.6+ CPU或NVIDIA GPU CUDA 9.0+ PyTorch> 1.0 视觉 安装 克隆此仓库: git clone https://github.com/justchenhao/STANet cd STANet 安装 1.0+和其他依赖项(例如,torchvision, 和 )
1
用于轨迹预测的 Transformer 网络 这是论文的代码 要求 pytorch 1.0+ 麻木 西比 熊猫 张量板 (项目中包含的是修改版) 用法 数据设置 数据集文件夹必须具有以下结构: - dataset - dataset_name - train_folder - test_folder - validation_folder (optional) - clusters.mat (For quantizedTF) 个人变压器 要训​​练,只需运行具有不同参数的train_individual.py 示例:训练 eth 的数据 CUDA_VISIBLE_DEVICES=0 python train_individualTF.py --dataset_name eth --name eth --max_epoch 240 --bat
1
Foundations of ultra-precision mechanism design 超精密机械设计基础全书,PDF共337页
2022-01-18 23:06:34 18.72MB 超精密机械 Foundations
1
Yong Li , Student Member, IEEE, Jiabei Zeng , Member, IEEE, Shiguang Shan , Member, IEEE, and Xilin Chen, Fellow, IEEE
2021-12-19 20:24:15 1.3MB 深度学习
1
Keras 自注意力 [| ] 处理顺序数据的注意力机制,考虑了每个时间戳的上下文。 安装 pip install keras-self-attention 用法 基本的 默认情况下,注意力层使用附加注意力并在计算相关性时考虑整个上下文。 以下代码创建了一个注意力层,它遵循第一部分中的方程( attention_activation是e_{t, t'}的激活函数): import keras from keras_self_attention import SeqSelfAttention model = keras . models . Sequential () model . add ( keras . layers . Embedding ( input_dim = 10000 , output_dim =
2021-11-30 20:14:56 26KB keras attention-mechanism Python
1
递归神经网络模型用于纠错 该存储库提供了在描述的各种模型的源代码。 该项目旨在实现和评估神经网络模型,特别是递归神经网络(RNN),双向递归神经网络(BRNN),序列到序列(seq-to-seq)模型以及最终基于注意力的机制。序列到序列模型。 下图说明了预测给定不正确短语的正确形式的编码器-解码器模型。 DyNet库 在当前项目的实施中,我们一直在使用DyNet。 动态神经网络工具包或DyNet是一个神经网络库,适用于具有动态结构的网络。 DyNet支持在神经网络计算中使用的静态和动态声明策略。 在动态声明中,每个网络都是通过使用有向和无环计算图构建的,该图由定义模型的表达式和参数组成。 DyNet在CPU或GPU上有效工作,最近为许多NLP研究论文和项目提供了支持。 您可以找到有关DyNet的更多信息。 资料集 我们的方法与语言无关。 专门针对我们的项目,我们使用对模型进行了训练和评估,
1